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Abstract

In this thesis we explain the theory of fast Fourier transform convolution, imaging of
nucleotide or string sequences, and some non-standard string-matching algorithms.
We also give a brief exposition of applications of signal processing techniques to
biosequence analysis. We provide examples of several test cases and implementations
of the algorithms with code in Mathematica and C. We do this with the ultimate
goal of improving biosequence analysis and the prevailing BLAST schemes.
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Chapter 1

Introduction

His nature grudged thinking, for it crippled his speed in action:

the labour of it shrivelled his features into swift lines of pain.

—T.E. Lawrence on Sherif Feisal

1.1 Fourier series

Physics often uses series expansions to simplify calculations or to arrive at usable

approximations. The Fourier series allows us to express periodic functions in an

intuitive way as a composition of the sine and cosine series. Expressing sinnx and

cosnx in terms of complex exponentials, yields:

sinnx =
einx − e−inx

2i
,

cosnx =
einx + e−inx

2
. (1.1)

Then we can compose our function as

f(x) = c0 + c1e
ix + c−1e

−ix + c2e
2ix + c−2e

−2ix + . . . =
n=∞∑

n=−∞

cne
inx. (1.2)

The sufficient conditions for the Fourier series to converge are the Dirichlet condi-

tions:

1. f(x) may only have a finite number of finite discontinuities, and
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2. f(x) may only have a finite number of extreme values.

Satisfying the Dirichlet conditions on a computer is one of the easier tasks we shall

encounter.

A periodic function f(x) is defined as a function for which

f(x + T ) = f(x), (1.3)

thus T is understood to be the period of the function.

Just note briefly that the real Fourier series that Fourier (the man) studied, and

the complex Fourier series have no real differences. Let

an = cn + c−n, bn = i(cn − c−n),

and, for n = 0,

c0 =
1

2π

∫ π

−π

f(x)e−i0xdx =
1

2π

∫ π

−π

f(x)dx =
a0

2
.

Then from Equation (1.2),

f(x) ∼
∞∑
−∞

cne
inx =

∞∑
n=1

[
cne

inx + c−ne
−inx

]
= c0 +

∞∑
n=1

[cn(cosnx+ i sinnx) + c−n(cosnx− i sinnx)]

= c0 +
∞∑

n=1

[(cn + c−n) cosnx+ i(cn + c−n) sinnx]

=
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) see (1.4).

A historical note: Fourier famously showed that any periodic function can

be composed of sine and cosine terms in his book Théorie analytique de la chaleur

(Fourier, 1820). He was not the first, as the essential formulas were known to Gauss,

Bernoulli, and Euler. Fourier was interested in a theory of heat and developed meth-

ods of integration with trigonometric series to calculate the propagation of heat in

a rectangular prism, the movement of heat in a solid cube, or the free movement
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of heat on an infinite line. Bernoulli on the other hand was trying to resolve the

difficulties of calculating the movement of vibrating strings using similar trigono-

metric series. These mathematicians arrived at the conclusion that a nicely periodic

function f on an interval 2π can be represented as the sum of the trigonometric

series
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx). (1.4)

The solution posed by the geometry of vibrating strings supposes that an ar-

bitrary function can always be developed as a series of arc lengths of cosines and

sines. To Fourier the most complete proof of this proposition consisted of resolving

a given function in a series for which one has determined the coefficients.

Fourier described it in this way: if in the series

a+ b cosx+ c cos 2x+ d cos 3x+ e cos 4x+ . . .

the value of x is inverted, the series stays the same. The sum of the series also

remains the same if one adds to x any multiple of the circumference 2π. Thus in

the equation

π

2
φ(x) =

1

2

∫
φ(x)dx+ cosx

∫
φ(x) cos xdx

+ cos 2x

∫
φ(x) cos 2xdx+ cos 3x

∫
φ(x) cos 3xdx+ . . . , (1.5)

the function φ is periodic and is expressed as a curve composed of arcs of equal

length; each of the arcs comprises two symmetric branches which correspond to the

two halves of the interval 2π. A similar expansion to (1.5) can be made using sines.

Next we will describe Figure (1.1) and outline how Fourier proves, using an arc

length argument, how a function F can be represented by functions φ and ψ of a

trigonometric series. In the figure, ψ is symmetric around 0 on the interval −π to

+π such that

ψ(x) = −ψ(−x);

similarly, for φ

φ(x) = φ(−x). (1.6)
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Thus any function F (x) when traced on a symmetric interval can be divided into

two functions φ and ψ. The third function in the figure, f(x), is equal to F (−x) by

the lengths of the arc measures F ′F ′mFF and f ′f ′mff . So,

F (x) = φ(x) + ψ(x) and f(x) = φ(x)− ψ(x) = F (−x),

and solving the two equations for F (x) and f(x) for φ(x) and ψ(x) we get equations

(1.6) after noting:

φ(x) =
1

2
F (x) +

1

2
F (−x) and ψ(x) =

1

2
F (x)− 1

2
F (−x).

Figure 1.1: Fourier’s picture proof. Fourier proves with this picture that an
arbitrary function F (x) can be expressed as the sum of two other functions. F (x) =
φ(x) + ψ(x), where φ and ψ are cosines and sines of multiple arcs.

1.2 Fourier transform

The Fourier transform of a function f(x) is the new function F (x):

F (x) =
1√
2π

∫ ∞

−∞
f(u)eixudu. (1.7)
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The general form of an integral transform consists of a kernel K(α, t) and the

function we’re transforming f(x):

g(α) =

∫ b

a

f(t)K(α, t)dt. (1.8)

The following are the kernels of several other named transforms:

• e−αt Laplace transform;

• Jn(αt) Hankel transform;

• tα−1 Mellin transform.

In the integral transform below (1.9), the period of the function is 2l and the

frequency of each of the terms cn is n/(2l),

f(x) =
∞∑
−∞

cne
inπx/l,

cn =
1

2l

∫ l

−l

f(x)einπx/ldx. (1.9)

In engineering, one often contrasts finite and infinite domains, or functions that

are discrete or continuous in time. In our case, we will consider the finite duration

discrete time Fourier transform (DTFT or DFT). The infinite duration continuous

time Fourier transform is given by

X(j) =

∫ ∞

−∞
x(t)e−2πijtdt j ∈ (−∞,∞).

The reader can easily permute the different limits and domains to obtain the other

categories of transforms.

1.3 Discrete Fourier transform

The discrete Fourier transform (DFT) takes an input basis vector of complex

numbers

x = {x0, . . . , xN−1} ,
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where the length N of the vector is a fixed parameter. The k-th element Xk of the

transformed complex vector X0, . . . , XN−1 is:

Xk =
N−1∑
j=0

xj e
−2πijk/N . (1.10)

The inverse Fourier transform reverses the process; it maps N complex numbers

(the Xj’s) into N complex numbers (the xj’s), i.e. X 7→ x:

xj =
1

N

N−1∑
k=0

Xj e
+2πijk/N . (1.11)

The only differences between the inverse and the forward transforms are the sign of

the exponential and dividing by N . The straightforward implementation of this is

a matrix-vector multiplication

Xk = xjFjk,

which clearly requires O(n2) operations (plus a twiddle for the exponents). Fjk =

exp(−2πi/n)jk = wjk
n is the primitive n-th root of unity for a field modulo a prime

p, e.g.

wn ≡
(
e−2πi/n

)n ≡ 1.

1.4 Fast Fourier transform

The modern origin of the fast Fourier transform (FFT) is an article by Danielson

and Lanczos in 1942 (Danielson & Lanczos, 1942), though methods for computing

the DFT can be traced to the time of Gauss. They showed that the DFT for

a vector of length N can be broken down into two parts with half the running

time. Consequently, the so-called Danielson-Lanczos lemma allows the recursive

application of these divisions. A consequence of this is that in implementations one

should only use vectors of length N = 2n with n ∈ Z.
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For even N , N = 2m:

Xk =
N−1∑

j=0, even

ωkj
n xj +

N−1∑
j=0, odd

ωkj
n xj

=
m−1∑
j′=0

ωk(2j′)
n x2j′ +

m−1∑
j′=0

ωk(2j′+1)
n x2j′+1

=
m−1∑
j′=0

ωkj′

m xeven
j′ + ωk

n

m−1∑
j′=0

ωkj′

m xodd
j′

since ω2k
n = ωk

n/2, and writing xeven
k = x2k and xodd

k = x2k+1.

There are many other FFT algorithms optimized for different uses. A standard

reference like Numerical Recipes (Press et al., 1992) provides detailed descriptions

of several of these variants.

Why is it that the FFT has a running time of O(n log n)? Well, running through

the array once takes O(n) time, then the recursive function call on each half results

in:1

T (n) = 2T (n/2) + Θ(n)

= Θ(n log n).

1.5 Translates and characters

What is the reason for considering expansions cos ax and sin bx, or the equivalent

complex exponentials eiax? The explanation of this requires the introduction of the

translation operators Ta, where a is a group element, with the properties:

1. Taf(x) = f(x− a)

2. T0 = I (identity automorphism of C)

3. Ta+b = TaTb

4. T−a = T−1
a .

1Strictly speaking O(n) is an asymptotic upper bound and Θ(n) is an asymptotic tight bound.
That is when neglecting constant multiplicative factors cn, f = cnO(g) means f is bounded above
by g in the asymptotic limit. f = Θ(g) is defined to mean f = O(g) and g = O(f).
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We arrive at the definition of a character by observing elementary properties of

the set of finite linear transformations of translates Taf of f , f ∈ C. For f 6= 0 to

each group element a there corresponds a complex scalar χ(−a) such that

Taf(x) = χ(−a)f(x).

Then by (1), the first property of translation operators, for all pairs (x, a),

f(x− a) = χ(−a)f(x). (1.12)

Note that if x = 0, f(−a) = f(0)χ(−a), which shows that χ is continuous and

non-zero. Then by the properties above and (1.12), we get the result:

χ(a+ b) = χ(a)χ(b). (1.13)

By convention, any complex-valued function χ 6= 0 satisfying (1.13) is called the

character of the group in question. Immediate results are that χ(0) = 1, i.e. it

is non-vanishing, and χ(−a) = χ(a)−1. For the RHS χ, a homomorphism from an

additive group to a multiplicative group, has the standard property χ(a−1) = χ(a)−1,

when written additively on the left. If a character χ is bounded, then (1.13) shows

that |χ(a)| = 1 for all group elements a. Therefore χ defines a homomorphism of

the group into the multiplicative group of complex numbers of absolute value 1.

Standard mathematical references on Fourier series like (Edwards, 1979) provide a

much more thorough explanation, but we need the formalism of characters for the

following section.

1.6 Convolution and correlation

In this section we briefly state the basic convolution equations and the Fourier

transform version, prove the convolution theorem from the definitions, and then

relate the notation to what is minimally used in engineering and in many articles

using applications of convolution/correlation.
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The sequence vectors we convolve are

data: “di, . . . , dN−1” 0 ≤ i ≤ N − 1

query: “qi, . . . , qL−1” 0 ≤ i ≤ L− 1

and the signal sequence cn

signal: “ci, . . . , cL+N−2” 0 ≤ i ≤ L+N − 2.

The convolution is given by

cn =
N−1∑
k=0

qn−kdk n = 0, . . . , L+N − 2, (1.14)

where it is understood that qn−k = 0 if i = k is less than zero. It takes NL

multiplications to compute this directly.

The correlation is very closely related to convolution and is given by

cn =
N−1∑
k=0

qn+kdk n = 0, . . . , L+N − 2, (1.15)

where qn+k = 0 if n + k ≥ L. The correlation can be computed as a convolution

simply by reading one of the two sequences backwards.

Take

αj =
N−1∑
k=0

βke
2πijk/N ,

where βk is the coefficient of the inverse Fourier transform. For the complete cycle

modulo N , when N = jk, j = N/k is a period. Then the correlation value is cn for

data and query vectors, D and Q respectively,

cn =
∑

µ

qµd
∗
µ+n =

1

N2

∑
µ

(∑
k

Qke
2πikµ/N

)(∑
l

D∗
l e
−2πil(µ+n)/N

)

=
1

N

∑
l≡(l (mod N))

QlD
∗
l e
−2πiln/N . (1.16)
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The order of the elements flips around N/2. Asterisk ‘∗’ denotes complex conjuga-

tion. The Mathematica version of this is in Appendix (B.1).

One can also write the convolution in integral form:

g(t) = f(t) ∗ h(t) =

∫ ∞

−∞
f(τ)h(t− τ)dτ. (1.17)

The functions f(t) and h(t) can be anything with the sufficient conditions: (1)

they both must be absolutely integrable on the two intervals (−∞, 0] and [0,∞); (2)

f(t) OR h(t) must be absolutely integrable on (−∞,∞). For example, let f(t) = 3

and h(t) = sin(t) on the interval 0 < t < π,

g(t) =

∫ π

0

3 ∗ sin(t− τ)dτ = −6 cos(t). (1.18)

To an engineer this is very useful since if he knows the impulse response of a

system, usually in the form of the response to a delta function input, he can use

convolution to find the output when the system is fed some input. Stated slightly

differently, the output of a system is the convolution of the input and the impulse

response.

Similarly, one can always find the inverse transform of a transfer function, for

example, by looking at a table of Laplace transforms, or by built-in Mathemat-

ica functions. The impulse response is often the result of some transfer function

stimulus. E.g.,

In[7]:= LaplaceTransform[Cosh[c*t], t, a]

Out[7]= a
a2−c2

In[8]:= InverseLaplaceTransform[%, a, t]

Out[8]= 1
2
(e−ct + ect).

We have given an electrical-engineering definition of convolution. Some alge-

braists prefer a different formalization, which I give here because it is so different,

or at least when written uses such different notation. See for example (Fiqueroa &

Gracia-Bondia, 2000). One can convolve elements as well as functions.

Given a unital algebra (A,m, u) with a unit map u ◦ ε and a counital coalgebra

(C,∆, ε) over a field F, the convolution of two elements f, g of the vector space of

F-linear maps Hom(C,A) is defined as the map f ∗ g ∈ Hom(C,A) given by the
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composition

C
∆−→ C ⊗ C

f⊗g−−→ A⊗ A
m−→ A.

This product turns Hom(C,A) into a unital algebra, where Hom(C,A) signifies

the space of homomorphisms of C and A. Fourier transform convolution and the

easily-identifiable delta function match locations also exist in the world of quantum

computers. Shor’s algorithm uses the quantum Fourier transform for factoring and

other algorithms use Fourier transforms for signal processing. While some trans-

forms can give good indications of periodicity, for example the Walsh transform

(Walsh, 1923), which has also seen applications in computational biology, the re-

lation of the FFT to cyclic cross-correlation seems unique. In Appendix (A) we

will give a better explanation of quantum search algorithms, and hint at quantum

convolution. Such quantum search algorithms can perform searches in O(
√
N)-time

which is a great deal better performance than O(N logN).

Definition 1.6.1. Zn are the integers mod n, Zn = {0, 1, . . . , n−1}. f are functions

from Zn 7→ C, which we often write in the form {f(0), f(1), . . . , f(n− 1)}. With an

inner product

〈f, g〉 =
∑

f(j)g∗(j),

and let χp(q) = e2πipq/N . The operator R is the reverse of f such that Rf ∈ C(Zn):

Rf(p) = f(−p).

The two orthonormal bases for C(Zn) are:{
χp√
N

}
0≤p≤n−1

and {δp}0≤p≤n−1 .

Proof that the one is an orthonormal basis:
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Proof. 〈
χp√
N
,
χq√
N

〉
=

∑
χp(r)χ

∗
q(r)

=
1

N

∑
r

e2πipr/Ne−2πiqr/N

=
1

N

N−1∑
r

e2πipr(p−q)/N

=
1

N

[
1−

(
e2πi(p−q)/N

)N
1− e2πi(p−q)/N

]
e2πi(n∈Z) = 1

= 0.

The other is the delta function, δq(r) = 1 when q = r and obviously δpq = 0.

Also, χq · χp = N , hence the normalization conditions above.

The Fourier transform of a character is a delta function:

χ̂q(p) = 〈χq, χp〉 = nδqp = δq(p).

The Fourier transform of a delta function is a character:

δ̂q(p) = 〈δq, χp〉 =
∑

δq(r)χ
∗
p(r) = χ∗p(q) = χq(−p) = (Rχq)(p).

So,

χ̂q = nδq and δ̂q = Rχq.

The Fourier transform is not entirely linear, e.g. here F is a Fourier transform:

(R̂f) = Rf̂

FRf = RFf .
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Proof. If f ∈ C(Zn)

(Rf )̂ (p) = 〈Rf, χp〉 =
n−1∑
k=0

Rf(k)χ∗p(k)

=
n−1∑
k=0

f(−k)χ∗−p(−k) =
n−1∑
k=0

f(k)χ∗−p(k)

= 〈f, χ−p〉 = f̂(−p) = (Rf̂)(p).

So,

R(f̂) = (Rf )̂ .

Two applications of the Fourier transform equal itself times a normalization

factor and a reversal, for all q ∈ Zn

ˆ̂
δq = (R̂χq) = (Rχ̂q)

= R(nδq) = nRδq

ˆ̂
δq(p) = nRδq(p)

ˆ̂
f = nRf or

1

n
R

ˆ̂
f = f .

Hence the Fourier transform is inevitable and the inverse Fourier transform is

the mapping f 7→ f̌ where f̌ = 1
n
Rf̂ ,

(Rf )̌ =
1

n
RR̂f =

1

n
RRf̂ =

1

n
f̂ .

There is no reverse-free, R-free version of the transform since:

δ̂p = χp

χ̂ = δ−p.

Now we prove the convolution theorem, that is we show that the Fourier

transform of a convolution is the same as the product of Fourier transforms and

that the convolution is equal to the inverse transform on the product of two forward
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transforms,

(f ∗ g)̂ = f̂ ĝ

(f ∗ g) = (f̂ ĝ)ˇ.

Proof. For all p ∈ Zn

(f̂ ĝ)(p) = f̂(p)ĝ(p)

=
n−1∑
j=0

f(i)χ∗p(j) ·
n−1∑
k=0

g(k)χ∗p(k)

=
n−1∑
j=0

n−1∑
k=0

f(j)g(k)χ∗p(j + k) [let k = l − j]

=
n−1∑
j=0

n−1∑
l=0

f(j)g(l − j)χ∗p(l)

=
n−1∑
l=0

n−1∑
j=0

f(j)g(l − j)χ∗l (p)

so f̂ ĝ =
n−1∑
l=0

n−1∑
j=0

f(j)g(l − j)Rχl(p) [by χ∗p(q) = χ−p(q) = χq(−p) = Rχq(p)].

Observe for example χ∗p(q) = χ−p(q), since e−2πipq/n = e2πi(−p)q/n.

And the second relation:

Proof.

(f ∗ g)(p) = (f̂ ĝ)(p)ˇ

=
n−1∑
l=0

n−1∑
j=0

f(j)g(l − j)Rχl(p)ˇ [note Rχl(p)ˇ =
1

n
R(R̂χl) =

1

n
RRχ̂l]

=
n−1∑
l=0

n−1∑
j=0

f(j)g(l − j)
1

n
χ̂l(p)

=
n−1∑
l=0

(
n−1∑
j=0

f(j)g(l − j)

)
δl(p)

=
n−1∑
j=0

f(j)g(p− j)
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which we recognize as the familiar convolution.

The Fourier transform of a convolution is the product of Fourier transforms, or

one could say the Fourier transform of a “product” is a product of Fourier transforms.

The use of the term “convolution” is arbitrary, and an entity with its properties could

just as easily be called a “product.” We re-express the convolution in terms of the

cyclic cross-correlation notation used in Rajasekaran (Rajasekaran et al., 2002) as

follows. Call the cyclic correlation zcyc = (z0, . . . , zn−1), for complex vectors x and y,

with a point-wise (“dyadic”) product x� y = (x0y0, x1y1, . . . , xn−1yn−1). Following

the custom of denoting the FFT of a vector with the corresponding capital letter,

the FFT is Zcyc = X�YR,

z(j) =
n−1∑
k=0

xj+kyk

=
n−1∑
k=0

Rx(−j − k)y(k)

= (Rx ∗ y)(−j)

= R(Rx ∗ y)(j).

Returning to Rajasekaran’s notation zcyc = R(Rx ∗ y) and the inverse we have:

zcycˆ = R(Rx ∗ y)̂

= R[(Rx)ˆ� y ]̂

= [R(Rx)̂ ]� (Rŷ)

= (RRx̂)(R̂y)

= x̂R̂y.

This concludes our elaboration and discussion of Rajasekaran’s five-line theory

section.2

2Two excellent books giving an exposition of the DFT and convolution are (Bracewell, 1986)
and (Heideman, 1988).
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Figure 1.2: Convolution theorem example. The height of the peaks is equal
to the length of the query string, in this case 5 units; this example used randomly-
generated data.
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Figure 1.3: Convolution string matching example. Uses a 22-nucleotide long
DNA query string and a very short data string.

1.7 Preliminary results

The mathematics above provides some of the theory for convolution and Fourier

transforms. Our interest is in performing FFT convolution on a set of DNA se-

quences to find match positions. Briefly, it is necessary to convert nucleic acids to

defined mathematical quantities. We do this by requiring for a nucleic acid sequence
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x that xj ∈ {1, i,−1,−i}, and by the mappings: Adenine −→ 1, Cytosine −→ −i,
Guanine −→ i, and Thymine −→ −1. This allows us to perform a discrete Fourier

transform as in Equation (1.10):

Xk =
N−1∑
j=0

xj e
−2πijk/N ,

and a correlation operation as in Equations (1.16) and (3.9),

x× y = DFT−1(DFT (x)�DFT (y∗)).

Where sequence x is a query, e.g. a primer product, and sequence y is a database,

e.g. Human chromosome 1. Then the complex vector c ≡ x×y, and any occurrence

of |cn|2 = dim(x) indicates a match of length dim(x) at location yN−1−n. A good

portion of Chapter 3 is dedicated to explaining these steps in greater detail.

Figure (1.4) shows the first “real” DNA sequences we correlated. The result is

similar to figures published in (Cheever et al., 1991).
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Figure 1.4: Homo sapiens chromosome 1 and primer product corre-
lation. The delta function at ˜50, 000 on the match position axis indicates
a match of length equal to the convolution amplitude at base pair position
150, 000 − 50, 000 ≈ 100, 000. The database used was the Homo sapiens genomic
contig sequences database which contains 1,395 sequences with 2,826,392,627 to-
tal letters. A sequence between primers including primers at both ends is called
a “product.” The primers were selected using http://www-genome.wi.mit.edu/cgi-
bin/primer/primer3 www.cgi. A positive control was performed using BLASTN

2.2.4 [Aug-26-2002] at http://www.ncbi.nlm.nih.gov/blast/Blast.cgi.

http://www-genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi
http://www-genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi


Chapter 2

Introduction to sequence analysis

—Confucius1

2.1 BLAST

Basic Local Alignment Search Tool (BLAST) is the dominant tool for bio-sequence

analysis. The National Center for Biotechnology Information (NCBI) recognized

the need for tools to do sequence comparisons and database queries and published

BLAST in 1990 (Altschul et al., 1990).

There are three main algorithmic steps to BLAST’s method for finding maximal

segment pairs (MSP’s):

1. compiling a list of high-scoring words;

2. scanning the database for hits;

3. extending the hits found.

For DNA, it uses a word list with a distribution of contiguous w-mers in the query

sequence. Often the length of w = 12. Thus a query of length n yields a list of

n− w + 1 words, which commonly represent a few thousand words in the list.

1 “Xúe ér bú yàn,
hùi rén bú juàn
To learn without tiring,
To teach without growing weary”



20 CHAPTER 2. INTRODUCTION TO SEQUENCE ANALYSIS

High-scoring segment pairs (HSPs) are related to MSPs in the sense that

MSPs ⊆ HSPs. The idea behind MSPs is that given two sequences A and B, we

are looking for all pairs (a, b) for which a and b are subsequences of A and B,

respectively. Both a and b are of the same length, and the software empirically sets

a similarity score S. If the two subsequences can be neither shrunk nor expanded

to increase the score S, then they form a MSP.

MSP’s are calculated which maximize the score and, thus, the degree of sequence

homology. They are functionally defined as a highest scoring pair of identical length

segments chosen from two sequences. An MSP score for two sequences may be

calculated using dynamic programming (DP) in computer time proportional to the

product of their lengths. The optimization problem thus addressed by dynamic

programming is to find the longest common subsequence.

BLAST for DNA is a typical exclusion-type algorithm. In the first step it locates

hits or initial survivors of the fixed word length w by looking for exact matches. In

the second step the hit is examined, and the MSP extension scheme is used. This is

to be contrasted to either typical exclusion-type algorithms, like the BYP method,

or the partition method for approximate matching. Furthermore, since the original

BLAST disallows gaps, a dynamic programming algorithm for finding an edit path

between sequences allowing the introduction of gaps addresses an entirely different

problem.

Position-Specific Iterated BLAST (PSI-BLAST) introduced a refinement on the

MSP idea used in the original BLAST. This method uses a so-called two-hit ap-

proach. The database is scanned for query words which when paired with the

database have a score at least T . If the alignment passes this criterion, it is re-

ported. Any such hits are termed hits.

After finding the initial hits, the second step is to examine the hits and see if

they lie within an alignment with a score above S. Determining the hit locations is

done by a look-up table hashing method. Every w-mer in the database is converted,

i.e. hashed,2 into an integer. Using this index a search may be made between the

query and the database. Corresponding matching w-mers are listed. A finite state

machine can also perform the functionality of this second step.

2A “hash” is a binary relation or associative array which assigns to each array element a positive
integer via a deterministic “hashing” algorithm.
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During the second “w-mer” step two filters are applied. The filters act to com-

pensate for locally-biased distributions of bases and highly-repeated sections. The

first filter works then as a means of limiting less statistically-significant words. It

removes an uninformative word when an 8-tuple occurs more often than predicted

by chance. For the second filter words from the query which are known to be from

highly repetitive sections are removed from the search in the database. Thus for

full database searches, while matches from the query to the known sublibrary of

repetitive sequences are reported, matches of such words between the query and the

database are not reported.

The third step expands each hit to a maximal segment pair. If the score, i.e.

the number of aligned elements, is higher than S, it is registered as a highest-

scoring segment pair. To find maximal segment pairs from high-scoring segment

pairs requires extending the hits until the running alignment score drops below the

score S, the maximum score yet attained. This extension step, producing alignments

which are maximal segment pairs, accounts for upwards of 90% of BLAST’s running

time. Consequently, many efforts have been made to increase the speed of this step.

One way to accomplish this is by reducing the number of extensions that need to be

performed. This can be done by increasing the values of T and S, but would reduce

the sensitivity to weak alignments.

The hashing step which performs the first “scan” step is done by what we consider

a brute-force method. The four letters A,C,G, T are each encoded as two bits (A

is 00, C is 01, G is 10, and T is 11). Then an array of all possible w-letter words

is generated. The number corresponding to each particular word location in the

database is recorded: this makes an associative array of words with a list of their

locations. This is brute-force in the sense that as a w-length frame moves through

the query and database sequences, as many as w − 1 elements of the last frame

position have already been examined. Possible optimizations could take advantage

of the redundancy of so many letters as the frame moves along a sequence. While

reports from NCBI suggest that this step is not where the majority of the computing

time is being spent (most time is spent in the extension step), it is particularly this

step which is comparable, if not much faster, to FFT convolution methods. Brute-

forcing all 8-mers with the FFT associated with their delta-function locations would
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Words (2^16 bits) Location

AAAAAAAA 23, 254, 30158, 30166

AAAAAAAC 55, 232

AAAAAAAG

(...)

TTTTTTTT

Figure 2.1: BLAST brute-force table lookup

be a comparable strategy.

This particular design means that the running time for locating w-mers doesn’t

have clear bounds. The running time may range from O(n) to O(n2). For instance

if one BLASTs the human genome’s 3 ∗ 109 base pairs with itself, setting w equal

to the length of the database, it will never finish.

One can also think of every w-mer as an integer in the range from [1, 4w] for

DNA sequences, or [1, 20w] for protein sequences. This results in an array of size

48 = 65536 for the 8-mers we enumerate in Figure (2.1).

With the help of mathematicians and programmers, BLAST has grown into a

small enterprise, with dedicated staff, funding, and FAQs. The codebase is sta-

ble, mature, and well-commented. One notable aspect of the code is that it cross

compiles on the following systems: OS DOS, OS MAC, OS NT, OS OS2, OS UNIX,

OS UNIX BSD, OS UNIX SUN, OS UNIX SYSV, OS UNIX IRIX, OS UNIX ULTRIX,

OS UNIX OSF1, and OS VMS. Some of these systems are no longer supported or

shipping owing to the quick obsolescence of entire commercial operating systems. A

consequence of this generic design is that all the basic IO functions and datatypes

are wrapped to “NCBI corelib” versions: it may require some work for a program-

mer to adapt to the corelib. Companies that specialize solely in building computer

systems, aka BioClusters, that run BLAST fast are profitable circa 2002.

What does BLAST do?
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5003 r@hale ~/blastexec/db> blastall

blastall 2.2.5 arguments:

-p Program Name [String]

-d Database [String]

default = nr

-i Query File [File In]

default = stdin

-e Expectation value (E) [Real]

default = 10.0

-m alignment view options:

(...)

So blastall, which is a front end for the different BLAST algorithms takes as

command-line arguments (1) one of the BLAST variants {blastn, blastp, blastx,

tblastn, tblastx}, (2) a database name, and (3) a query file. The common database

files can be downloaded from the NCBI servers at ftp://ftp.ncbi.nih.gov/blast/db/.

The nucleotide and protein sequence databases are updated by the sequencing and

annotation projects daily, and most installations update their local images often.

Truly, how are these carbons, hydrogens, and nucleic acid sequences represented

in computer memory and mass storage? They are mapped to ASCII characters,

following a set of conventions known as the FASTA format description. This has

nothing to do with the FastA (Fast Approximation) algorithm other than the name.

FastA is an implementation of the Smith-Waterman string match algorithm with two

heuristic steps to avoid excessive calls to the full algorithm at the cost of sensitivity.

Section (2.4) contains the Smith-Waterman procedure citation.

For the 23 amino acid residues, which are run using BLASTP and TBLASTN,

the supported codes are:

A alanine P proline

B aspartate or asparagine Q glutamine

C cystine R arginine

D aspartate S serine

E glutamate T threonine

F phenylalanine U selenocysteine

G glycine V valine

H histidine W tryptophan

I isoleucine Y tyrosine

K lysine Z glutamate or glutamine

L leucine X any

ftp://ftp.ncbi.nih.gov/blast/db/
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M methionine * translation stop

N asparagine - gap of indeterminate length

with two problematic codes for the presence of gaps. ‘X’ means any single amino

acid, and ‘-’ means a gap of indeterminate length (more on gaps below).

The nucleic acid codes are

A --> adenosine M --> A C (amino)

C --> cytidine S --> G C (strong)

G --> guanine W --> A T (weak)

T --> thymidine B --> G T C

U --> uridine D --> G A T

R --> G A (purine) H --> A C T

Y --> T C (pyrimidine) V --> G C A

K --> G T (keto) N --> A G C T (any)

- --> gap of indeterminate length

with similar codes for gaps and for a single unknown nucleotide. ‘N’ represents any

of {A,G,C,T}; and ‘-’ means a gap of indeterminate length.

And despite the desire to avoid duplicating information that anyone could find in

an introductory biology textbook, we duplicate here the translation table between

the amino acid codes and the nucleic acids codes. We do so for the simple reason

that the entries in the BLAST databases are often of proteins and are submitted as

amino acids. For a program that uses these databases, it is necessary to re-encode the

amino acids as nucleic acids to take advantage of the complex-plane encoding which

is at the heart of our scheme, and the most recent schemes by Rajasekaran et al.

(2001) and Katoh et al. (2002). This poses the very simple problem of choosing

which of the several 3-letter DNA codes to use when re-encoding. For example,

serine and leucine have as many as six equivalent and different DNA codes which

could result in problematic results when re-encoded and run through a computer

alignment scheme. There is no ambivalence going from DNA codes to amino acid

codes however. If you’re lost, nucleic acids make up RNA and DNA and amino acids

make up proteins.

A very useful and often-searched database, the ‘est human’ database uses only

nucleic acids, and thus our translation problem is alleviated in that circumstance.

Amino Acid FASTA DNA Codes for each Amino Acid

Abbreviation



2.1. BLAST 25

Alanine A GCA,GCC,GCG,GCT

Cysteine C TGC,TGT

Aspartic Acid D GAC,GAT

Glutamic Acid E GAA,GAG

Phenylalanine F TTC,TTT

Glycine G GGA,GGC,GGG,GGT

Histidine H CAC,CAT

Isoleucine I ATA,ATC,ATT

Lysine K AAA,AAG

Leucine L TTA,TTG,CTA,CTC,CTG,CTT

Methionine M ATG

Asparagine N AAC,AAT

Proline P CCA,CCC,CCG,CCT

Glutamine Q CAA,CAG

Arginine R CGA,CGC,CGG,CGT

Serine S TCA,TCC,TCG,TCT,AGC,AGT

Threonine T ACA,ACC,ACG,ACT

Valine V GTA,GTC,GTG,GTT

Tryptophan W TGG

Tyrosine Y TAC,TAT

Researchers who use sequence comparison schemes with highest scoring maximal

pairs to do sequence homology comparisons can run into problems. Often it is

necessary to have a thorough grasp of database searching and/or statistics to analyze

the resulting scores definitively. For instance, when new proteins are sequenced

often the best clues to their function come from comparing the proteins to other

known protein sequences. One of the main motivations for the development of

BLAST3 is the observation that with the HSPs and high scoring local alignments,

false homologies occur with surprising frequency.

Altschul’s article on protein database searches for multiple alignments demon-

strates that high scoring alignments with false homologies occur with a surprising

abundance. BLAST3 was designed to minimize the number of so-called false ho-

mologies by not just looking for alignment similarities, but for statistically-significant

ones. There are many circumstances where high-scoring similarities are indicated

for unrelated sequences: these could be minimized by incorporating a more powerful

statistical framework with traditional techniques.

A researcher who uses only pairwise comparisons may miss biologically-significant

relationships. For instance, when looking at a family of cytochromes, a researcher
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Variant Function
blastn nucleotide query to a nucleotide database
blastp protein query to a protein database
blastx nucleotide (translated) query to a protein database
tblastn protein query to a nucleotide (translated) database
tblastx nucleotide (translated) query to a nucleotide (translated) database

Figure 2.2: BLAST variants

DB Name Description Location Size
NT Non-redundant GenBank+EMBL+DDBJ+PDB ftp.ncbi.nih.gov/blast/db/nt.Z 2.14 GB

(no EST, STS, GSS, or TAGS sequences)
NR Non-redundant GenBank CDS ftp.ncbi.nih.gov/blast/db/nr.Z 364 MB

translations+PDB+SwissProt+PIR
est human Non-redundant GenBank+EMBL+DDBJ ftp.ncbi.nih.gov/blast/db/est human.Z 855 MB

EST human sequences
SWISS-PROT SwissProt extracted ftp.ncbi.nih.gov/blast/db/swissprot.Z 33.1 MB

from the SP NR
PDB Sequences from the 3-dimensional structure ftp.ncbi.nih.gov/blast/db/pdbaa.Z 3.6 MB

at Brookhaven Protein Data Bank

Figure 2.3: Several BLAST-able databases

may notice distantly related cytochromes among high-scoring sequences. He might

then investigate to determine whether those regions show substantial overlap. It is

this process that BLAST3 aims to automate (Altschul & Lipman, 1990, page 5513).

2.1.1 BLAST variants

There are many variants of BLAST that have been developed over the years. Some

of the ones we know about are: NCBI BLAST, and Apple/Genentech BLAST on

AltiVEC.

In May 2002, Apple Computer released a single rack space unit server computer

product named Xserve. Clustered server computers and an operating system that

is entirely GUI-based, as all of Apple’s operating systems prior to OS X were, do

not work in synergy. So, in a way the release of Xserve signalled Apple’s foray

into the world of computing clusters and increased its relevance with the scientific

computing crowd. Before these two developments, many computer professionals had

held Apple in disdain, barring their great astonishment at the friendly face of the

Macintosh 128k in 1984.
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5004 r@hale ~/blastexec/db> blastall -p blastn -d ./est_human
-i ../jahansprimer.txt
BLASTN 2.2.5 [Nov-16-2002]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query=
(20 letters)

Database: est_human
5,040,861 sequences; 2,613,540,672 total letters

Searching..................................................done

Score E
Sequences producing significant alignments: (bits) Value

gb|CA487488.1|CA487488 AGENCOURT_10808671 MAPcL Homo sapiens cDN... 40 0.008
gb|BU623275.1|BU623275 UI-H-FL1-bgc-g-01-0-UI.s1 NCI_CGAP_FL1 Ho... 40 0.008

>gb|CA487488.1|CA487488 AGENCOURT_10808671 MAPcL Homo sapiens cDNA clone
IMAGE:6718976 5’

Length = 1049

Score = 40.1 bits (20), Expect = 0.008
Identities = 20/20 (100%)
Strand = Plus / Plus

Query: 1 agaaggctggcactgtacga 20
||||||||||||||||||||

Sbjct: 483 agaaggctggcactgtacga 502

>gb|BU623275.1|BU623275 UI-H-FL1-bgc-g-01-0-UI.s1 NCI_CGAP_FL1
Homo sapiens cDNA clone

UI-H-FL1-bgc-g-01-0-UI 3’
Length = 723

Score = 40.1 bits (20), Expect = 0.008
Identities = 20/20 (100%)
Strand = Plus / Minus

Query: 1 agaaggctggcactgtacga 20
||||||||||||||||||||

Sbjct: 621 agaaggctggcactgtacga 602

Figure 2.4: Sample BLAST output
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5109 r@hale ~/blastexec/db> time blastall -p blastn -d ./est_human
-i ../jahansprimer.txt -o ../jahansprimeroutput.txt

9.212u 1.576s 3:22.24 5.3% 0+0k 0+0io 178629pf+0w

Figure 2.5: Whole-genome BLAST timing. In this trial we ran BLAST on
the est human database to correlate two primers. When searching the est database
for primers one is trying to verify primer specificity. A pair of primers are used to
amplify a certain gene or region of nucleic acid sequence. If the primer pair amplifies
more than one region this can result in two regions of different lengths. The desired
region might be separated by length using gel electrophoresis. Successfully BLAST-
ing such a primer pair will help ensure that only the desired region is amplified, or
will help correct possible problems later on. This sample run of a 20-base primer
and a 3.0 GB database took 3 min 22 sec.

It became important to Apple to increase market share in hardware sales in

compute-intensive organizations by releasing rack mount servers. The Biotech space

has significant purchasing power, and one of its chief applications is BLAST. This

lead to the development of the Apple/Genentech on AltiVEC version of BLAST.

What this amounted to in many cases was replacing multiply and add operations

by the vectorized AltiVEC’d versions of the same calls. AltiVEC-optimized ap-

plications can be straightforward to implement and often involve unrolling loops,

migrating function calls, and the repeated running of profilers. Apple’s profiler CHUD

is particularly well-suited for marking sections of code that are taking up a lot of

CPU time and that need optimizing.

The largest Xserve biocluster in the world was installed by The BioTeam of

Boston, MA, at the biotech firm TLL/Singapore in Singapore. It is an 85-node

system running Platform LSF (a grid clustering program) and is used as part of a

high-thruput genome annotation pipeline.

2.1.2 PSI-BLAST and applications

PSI-BLAST is an extension to the original BLAST which allows gaps. It extends

the original BLAST by using a two-hit method. The two-hit method determines

statistically-significant alignments with a position-specific scoring matrix. By using
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a dynamic programming algorithm it extends in both directions the central pair of

aligned residues resulting from the initial hit scan. They set a window-length A and

extend a segment only when two non-overlapping hits are found less than a distance

A from one another.

Alignment-free sequence analysis is a topic that has considerable interest to re-

searchers interested in phylogeny and inheritance, as well as to disinterested mathe-

maticians and programmers. Molecular biology has been reduced to linear sequences

of discrete units, much like the abstraction used by linguists for natural language.

By using a linear string-based model and removing the physicality of these molecules

and molecular networks, we lose the ability to analyze the undeniable 3D structure

and complex functional relationships. Well established pair-wise sequence alignment

tools query a database with a sequence pattern and return a similarity score and

database locations. Protein folding is an example of this problem. Finding the sim-

ilarity in tertiary structure (folding onto themselves) between two RNAs is in the

class of NP-hard problems. NP is the class of problems which have solutions which

can be quickly checked on a classical computer (e.g., checking a factorization) but

for which the solutions cannot be quickly determined on a classical computer (e.g.,

performing the actual factoring). P is the class of computational problems that can

be solved quickly on a classical computer (sorting a list, say). These classes are

not so easily defined on quantum computers since, for instance, factoring can be

performed as multiplication with a similar evaluation cost.

The researcher Iddo Friedberg has published several papers analyzing PSI-BLAST

on such criteria as how sequence analysis can indicate protein structure (Friedberg

et al., 2000; Friedberg & Margalit, 2002b,a). It is widely observed that structurally-

similar proteins have very dissimilar sequence. This is partially due to the fact that

sequence space is larger than structure space. In studying the “sequence-structure”

relationship, Friedberg concentrated on mutually persistently conserved (MPC) po-

sitions in a stringently chosen set of protein samples exhibiting structural similarity

and sequence dissimilarity. One of the chief results is that “residue” conservation

despite sequence dissimilarity is essential to protein function. A “residue” in this

context means an area of the protein exhibiting hydrophobicity, charge, or another

well-defined structural property.
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Conclusions from studies Friedberg references indicate that there is a small num-

ber of protein sequences which produce conserved structural residues across organ-

isms and protein classes.

Genetic shuffling and recombination occurs which may not change the expressed

phenotype and which may in fact cause phenotypic improvement. For example,

Zhang et al. (2002) published results indicating that “genome shuffling leads to

rapid improvement in bacteria.” Alternatively, intron movement and recombination

shows evidence for being an evolutionary process in population genetics (Lynch,

2002). There has also been work on sequence analysis tools which do not require

pair-wise alignments. One recent example of such a program uses a “consensus

database” and sequence tagging to do its comparisons (Christoffels et al., 2001).

Homologous recombinates can be created from a genotypic library of background

strains. This alleviates the problem of creating varied genomic libraries by random

mutagensis. If one has a probe, random mutagensis is not a very efficient way of

targeting genes or gene products. Zambrowicz & Sands (2003) conducted a study of

5,000 “druggable” genes via mouse knockout. Of these 5,000 genes from the human

genome, they determined approximately 100–150 high quality targets. Their study

examined the role mouse knockout genetics might have on foreseeable drug target

discoveries and on validation.

Gene knockout (KO) consists of selectively removing a single gene and observing

the change in phenotype. “Knocking-out” the gene is not accomplished by finding

primers which cut in the correct location, as one would do in preparation for PCR.

By adding a mutagen to a colony of cells a body of genetic mutants result. Nuclear

transfer entails injecting the nuclei of the mutant embryonic stem cells into a host

organism’s egg cell.

By taking DNA which is complementary to the coding strand one wants to knock

out, one can produce a short specific probe. In practice this requires complete

knowledge of the gene one wishes to modify. A mutagen is linked to each probe

which allows the localization of the mutation. The specificity of an engineered probe

to a mutagen can be determined if it has an observable chemical tag (fluorescent,

radiative, etc.).

Before the completion of major sequencing projects, libraries and clones were
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necessary for conducting gene-specific experiments. With a fuller library of expres-

sion sequence tags (ESTs), which annotate a full genomic sequence, one can in

theory produce a knockout library of animals reflecting the phenotypes associated

with each gene. Human knockout is not possible, because we can’t experiment on

live humans, but we can knock out human-like genes in other organisms. Scientists

therefore conduct experiments on homologous genes in humans and mice. These ho-

mologs are found via comparative genomics, which is often accomplished via BLAST

searches. Over evolutionary time, the differences in the genetic makeup of an or-

ganism and the location of the genes in a single organism change. Heredity can be

studied by such applications of comparative genetics.

2.2 MAFFT

As we saw in Chapter 1, it is pretty easy to compute the location of matching

sequence pairs using 1D FFT convolution. The problem with real-world sequence

data is that there exist gaps, often of indeterminate length and content. By the

FASTA conventions given above these gaps have specific codes. Gaps are inevitable

because of the biological methodology used in determining sequences when high or

complete coverage is necessary.

In addition to gaps, a scoring algorithm which gives an error estimate between

the query-database pair is often essential for biologically-motivated analysis (see

above for the PSI-BLAST scoring technique). A method for doing gapped multiple

sequence alignments with the FFT called MAFFT (Multiple Alignment FFT) was

proposed by Katoh et al. (2002). Theirs is a substantial effort, with a 100-fold

reduction in time over previous multiple alignment schemes such as T-COFFEE and

comparable accuracy to standard accuracy benchmarks like ClustalW (Thompson

et al., 1994). Parts of MAFFT were in development for over five years, looking at

the dates in their code. In this section we analyze some aspects of their paper’s

solution to the problems of scored gapped FFT alignment.

The main motivation for using FFT correlation in this context is to optimize the

Needleman and Wunsch (NW) algorithm since it does not scale practically for

hundreds or even dozens of sequences. Needleman and Wunsch scales very poorly
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in CPU time, approaching O(NK) for K sequences of length N .

tbfast (aa) Version 3.82
generating 200PAM scoring matrix for amino acids ... done.
pre in align = pre
Constructing dendrogram ... done.
STEP 1 /35
group1 = 34
group2 = 35
FFT ... 4 segments found

Figure 2.6: MAFFT group-to-group alignments. MAFFT uses the FFT to
find multiple segment pairings between groups of sequences.

Figure 2.7: MAFFT 25 sequences unaligned. MAFFT provides an assortment
of algorithms to perform multiple sequence alignment. Two heuristic FFT meth-
ods are developed: FFT-NS-2 is a progressive method; FFT-NS-i is an iterative
refinement method.

2.2.1 Dynamic programming

MAFFT uses FFT convolution as inputs to a dynamic programming algorithm. The

general idea behind dynamic programming is breaking up a large computational
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Figure 2.8: MAFFT 25 sequences aligned. MAFFT has inserted optimal gaps
in these now-aligned nucleotide sequences. Letters are color-coded in their aligned
columns.

problem into smaller problems then storing the answers to the smaller subproblems.

The stored answers are then used to solve the larger problem. The Needleman and

Wunsch algorithm is not the DP algorithm that is most often used in bioinformatics

applications, as the Smith-Waterman procedure, for one, supersedes it in efficiency.

There are two aspects which characterize problems for which a dynamic program-

ming algorithm may produce an optimal solution. One, the problem must have op-

timal substructure. That is, optimal solutions to subproblems must exist. Thus the

dynamic programming algorithm iterates on subproblem instances. Two, the sub-

problems must be overlapping. The recursive algorithm revisits the same problem

over and over again. This is very different from a divide-and-conquer scheme. The

overlapping subproblem stipulation obviously has implications for many sequence

alignment problems. Overlapping high-quality sequence is the most useful data for

genome sequence assembly programs such as GigAssembler.

When the algorithm solves the subproblems, it stores them in an array. So

let a 2D array subSolution(i, j) maintain the solutions to the problems that have

been solved. When the recursive function computes another solution, it fills in

the appropriate entry in the table. After proceeding through several iterations on
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subproblems however, it begins to re-visit problems it has already solved, and so

it returns the solution immediately. As the array subSolution(i, j) fills up, the

larger problem nears its solution. Since by definition the optimal solutions to the

subproblems must exist, if the algorithm succeeds minimally, it succeeds in the large.

The direct analogy to sequence algorithms is the subproblem of pair-wise matches

and the larger problem is global alignment with optimal gaps.

Dynamic programming is very good at finding optimal alignments between two

sequences. However, it fails when comparing more than two sequences simply enough

because the computational time is proportional to O(NK), where N is the length of

the string or sequence fragment, and K is the number of sequences. It is apparent

this is prohibitively costly for even as few as three sequences, when compared to

FFT convolution, which requires only O(N logN).

Dynamic programming has a very close relation to edit distance, the number of

iterative steps needed for a particular algorithm to “replace” one string by another.

This is only interesting of course if the replace(string X by string Y) operation is

significantly more costly than an individual iterative step.

2.2.2 FFT application to group-to-group alignment

Katoh et al. (2002) observed that group-to-group alignments are also possible using

more or less generic FFT correlation.

For reasons relating to “protein residue substitution frequencies,” see (Grantham,

1974), Katoh et al. (2002) formulate the FFT correlation for an amino acid a in

terms of (1) the volume value v(a) and (2) the polarity value p(a). As a result, the

correlation of the volume component cv(k) is

cv(k) =
∑

1≤n≤N,1≤n+k≤M

v̂1(n)v̂2(n+ k). (2.1)

And the correlation of the polarity component cp(k) is

cp(k) =
∑

1≤n≤N,1≤n+k≤M

p̂1(n)p̂2(n+ k). (2.2)

These equations are functionally equivalent to Equation (1.15).
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One can consider these two equations as special cases with one sequence in each

group. So the extension from sequence-to-sequence to group-to-group alignment

is done by replacing v̂1(n) by v̂group1(n). This is a linear combination of volume

components belonging to group1. Thus Equations (2.1) and (2.2) now become:

v̂group1(n) =
∑

i∈group1

wi · v̂i(n) (2.3)

and

p̂group1(n) =
∑

i∈group1

wi · p̂i(n). (2.4)

wi is the weighting factor for sequence i calculated via the ClustalW method.

This group alignment idea would be useful for converting a sequence to a se-

quence of four-dimensional vectors whose components are frequencies of nucleotides

{A,C,G, T}, instead of volume and polarity values.

2.2.3 FFT scoring and gap penalty

A similarity matrix H(i, j) between two amino acid sequences A(i) and B(j) is

constructed by settingH(i, j) = M̂A(i)B(j). i and j are positions in the two sequences.

The normalized similarity matrix M̂ab for amino acids a and b is

M̂ab = [(Mab − average2)/(average1− average2)] + Sa. (2.5)

The two average values are defined as: average1 =
∑

a faMaa and average1 =∑
b fbMbb. fa is the frequency of the occurrence of amino acid a and Sa is a parameter

that functions as a gap penalty. A value for the parameter Sa is 0.06.

Then leveraging the group-to-group alignment discussion above, when two groups

of sequences are aligned, the homology matrix between group1 and group2 is calcu-

lated as:

H(i, j) =
∑

n∈group1 m∈group2

wnwmM̂A(n,i)B(m,j). (2.6)

A(n, i) is the i-th site of the n-th sequence in group1; similarly, B(m, j) is the j-th

site of the m-th sequence in group2; wn is defined as above.

The NW algorithm has factors for gaps, which we state here, these will go into
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the value for the accumulated score for the optimal path:

G1(i, x) = Sop · {1− [gstart
1 (x) + gend

1 (i)]/2}, (2.7)

and likewise for G2(j, y). Here gstart
1 (x) is the number of gaps that start at the x-th

site and gend
1 (i) is the number of gaps starting at the i-th site:

gstart
1 (x) =

∑
m∈group1

wm · am(x) · zm(x+ 1), (2.8)

gend
1 (i) =

∑
m∈group1

wm · zm(i− 1) · am(i). (2.9)

The two parameters to these gap penalties, zm and am, are: if the i-th site of

sequence m is a gap, then zm(i) = 1 and am(i) = 0; if it is not a gap, then zm(i) = 0

and am(i) = 1. Two competing methods for calculating the gapped score are given

in (Thompson et al., 1994) and (Gotoh, 1993).

The recursive equation for NW for the optimal alignment is:

P (i, j) = H(i, j) +max


P (i− 1, j − 1)

P (x, j − 1)−G1(i, x) (1 ≤ x < i− 1)

P (i− 1, y)−G2(j, y) (1 ≤ y < j − 1).

(2.10)

This is the accumulated score for the optimal path from (1, 1) to (i, j). So in

fact it appears as though Katoh et al. have not developed any novel gap scoring

technique. They are using the NW score with some simplifications. Specifically

one simplification is only using the wm measures for the weights from ClustalW.

The complexity is of course in scoring the gap penalty: the recursion in Equation

(2.10) is determined entirely by the gap penalties G1 and G1. And from Equations

(2.8) and (2.9), with the much simplified zm and am, a great deal of complexity is

spurned, presumably in the name of speed.
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2.3 Alignment, substitution matrices, and sequenc-

ing

As formal and hopefully useful definitions for some standard concepts like gaps and

local alignment haven’t been given yet, we state here some definitions.

Definition 2.3.1. A gap is any maximal, consecutive run of spaces in a single string

of a given alignment.

Definition 2.3.2. We define an alignment of two or more sequences intuitively.

An alignment with offset n of a pair of alphabetic sequences S1 and S2 is a pairing

of letters of the sequences in which the i-th letter of S1 is paired with the (i + n)-th

of S2. For a particular alignment, a match occurs if and only if corresponding letters

are identical.

Definition 2.3.3. The local alignment of two strings S1 and S2, is given by

substrings α and β of S1 and S2, whose similarity, i.e. optimal global alignment

value, is maximal for all pairs of substrings from S1 and S2.

Definition 2.3.4. Local similarity is a measure of relatively conserved subse-

quences.

Definition 2.3.5. Global alignment determines the overall alignment of two se-

quences, and may contain large stretches of low similarity.

MAFFT (Section (2.2)) is a global alignment program. It finds alignments between

a set of protein sequences of similar length.

Definition 2.3.6. Global similarity determines the overall similarity of two se-

quences, and may contain large stretches of low similarity.

Definition 2.3.7. Homology means exhibiting similarity in characteristics result-

ing from common ancestry. However researchers doing sequence alignment may

sometimes use “sequence homology” interchangeably with “sequence similarity.”

Similarly, two homologous proteins are proteins related to each other by a common

ancestor in their evolutionary histories.
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2.3.1 PAM matrices

The acronym PAM has two meanings in the literature: “point accepted mutation”

and “percent accepted mutations.”

Definition 2.3.8 (PAM unit). Two sequences S1 and S2 are defined to be one

PAM unit divergent if a series of accepted point mutations, without insertions or

deletions, have converted sequence S1 to S2. For one PAM unit of divergence, there

can be no more than one mutation per one-hundred amino acids.

An accepted mutation is one which when incorporated into the protein doesn’t

result in changed phenotype or functional structure. If it does result in changed

phenotype, the change must be at least nonlethal.

Several remarks should be made on interpreting PAM units. Firstly, one PAM

unit divergence between two sequences does not mean that they differ by one percent.

For two aligned sequences—recall that there are no insertions or deletions—that

have a certain score, they could well be different by less than their score indicates.

The point mutation at a certain location can mutate back to its original state. For

sequences with very large PAM scores, 200–300 PAM units, one still expects the

sequences to be identical in most positions.

Secondly, the actual calculation of the PAM number is subject to problematic

biological constraints. Ideally the sequence of an extant protein is compared with

a genetic ancestor and the number of point mutations counted. Acquiring ances-

tor protein and sequence is often difficult, since in a sense all we have currently

are the extant organisms. One also can’t be sure that only accepted mutations

have occurred: in protein evolution, insertions and deletions occur but are not dis-

tinguishable and the correct correspondence between sequence positions may be

impossible to determine. Finding true historical gaps is very difficult especially in

circumstances with large numbers of PAM units.

A technique that leverages the molecular clock theory can help to make calcu-

lations between ancestral proteins. Suppose two sequences Si and Sj can be shown

to have diverged from a common ancestor Sij. Following the molecular clock the-

ory, the expected PAM unit distance between Sij and Si equals the expected PAM

unit distance between Sij and Sj. Thus, the difference in the PAM scores between
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Sij and its descendants Si and Sj can be taken to be half the number of differ-

ences between Si and Sj. However this is mostly a theoretical guideline, since one

can seldom assume that amino acid mutations are (1) reversible and (2) uniformly

bi-directional—equally likely to occur in both inherited and derived directions.

The funny thing about PAM matrices is that they group sequences with the same

PAM unit score into a single matrix. To form an ideal PAM matrix one collects

a set of pairs of homologous sequences which have the same PAM score n. Next,

each pair of sequences is aligned and for each amino acid pair Ai, Aj, the number of

times Ai matches opposite Aj is counted. That number is then divided by the total

number of pairs in all the aligned data. This quotient gives the frequency f(i, j),

and fi and fj are the frequencies that the amino acids occur in the sequences. So fi

is the number of times Ai appears in all the sequences divided by the total lengths of

the sequences. For the ideal PAM matrix values, one divides the true replacement

history f(i, j) by the replacement history due to chance, f(i)f(j). The log-odds

ratio for the (i, j)-th PAM entry is therefore:

PAM(i, j) ≡ log
f(i, j)

f(i)f(j)
. (2.11)

The logarithm is taken because when PAM matrices were first being used in 1978 by

Dayhoff et al. (1978), it was important that addition is easier than multiplication.

PAM matrices have proven very effective for finding alignments between biologically-

significant protein sequences. In fact, the PAM250 matrix is often considered the

“canonical” protein scoring matrix. The PAM250 matrix is a matrix which has ho-

mologs which diverge by 250 PAM units, even after an scheme to introduce optimal

gaps has been applied. There is no analytic way of characterizing the effective-

ness of PAM matrix scoring, in part because it is so difficult to quantify biological

significance beyond simply knowing a lot about a certain set of proteins. Time

and research experience have proven PAM’s usefulness, though another substitution

matrix, BLOSUM62, is being increasingly used (Henikoff & Henikoff, 1992). The

BLOSUM62 matrix scheme emphasizes scoring conserved substrings and a database

of known proteins. Such a database cataloguing protein structure and functional

domains is PROSITE http://www.expasy.ch/prosite/. Position-specific scoring ma-

trices (PSSMs) which we describe in Section (3.1.1) have much in common with

http://www.expasy.ch/prosite/
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PAM scoring matrices.

2.3.2 Sequencing and gap distribution

As we saw in Section (2.1), the online nucleotide and protein sequence databases use

gap characters to represent gaps of indeterminate length. Some of these gaps result

from errors accrued during the process of sequencing and assembly. For example,

when using the shotgun sequencing technique on a genome like the human genome,

with huge areas of repeated sequence, it becomes impossible to use bacterial or yeast

artificial chromosomes to make the clone libraries. The level of repeats exceeds

the threshold for either structural stability or the capacity of the translation and

transcription machines to translate and transcribe sequences with very long repeat

regions.

Lander & the International Human Genome Sequencing Consortium (2001) de-

tails the steps of hierarchical shotgun sequencing:

Genomic DNA −→ BAC library −→ Organized mapped large clone contigs

−→ BAC to be sequenced −→ Shotgun clones −→ Shotgun sequence −→ Assembly.

(2.12)

So the BAC library is constructed by fragmenting the original genome and cloning it

into large-fragment cloning vectors. The genomic DNA fragments in the BAC clones

are then organized into a physical map (often with the aid of fingerprint scaffolding).

Individual BAC clones are then selected and sequenced by an automated process

using the random shotgun method. After the BACs are sequenced, the sequences

are assembled reconstructing the sequence of the genome.

This last assembly step was accomplished for the HGP by a program written by

Jim Kent at the University of California at Santa Cruz called GigAssembler (Kent

& Haussler, 2001). GigAssembler was run on the first “freeze” of the HGP sequence

data on May 24, 2000. For political reasons having to do with the simultaneous

publication of the private Celera sequence data and the public Human Genome

Project data, Kent had little more than one month to write his program and set it

to work on several years worth of data. The program uses the full assortment of
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extension tail

-----------------------------------------------
||||||||||||||||||||||||||||||||||

-----------------------------------------------

tail extension

Figure 2.9: Sequence with low-quality tails.

collected data: the sequence contig, fingerprint map, mRNA, EST, and BAC end

data.

The design of GigAssembler is interesting in the sense that it incorporates a wide

range of biological data, must take care of problems in this data, and that it incor-

porates a variety of bioinformatics computer techniques. The fact that it works,

i.e. can assemble sequence with low error, from HGP data is also an unmistakable

indicator that the hierarchical human genome sequencing paradigm developed be-

tween Washington University, MIT Whitehead, and the Sanger Centre is sound.

That it is sound, via its basis on hierarchical shotgunning, and not whole-genome

shotgunning, is important for many reasons. For one, Celera Genomics used the

HGP’s fingerprint contigs to assemble their own WGS-derived sequence. To give an

exposition of the full assembly method would be unnecessarily tedious, but a short

description may prove enlightening.

There are eight algorithmic steps to the program:

1. Overlapping initial sequence contigs are merged into “rafts.” These sequence

contigs come from one of two places—they are either constructed from finished

sequence or are from accessions to the draft clone library. This merge may

be as simple as aligning the ends of overlapping contigs, but for many initial

sequence contigs the ends have data of very low quality. These low-quality

ends are discarded and regarded as non-aligned “tails.”

2. Sequenced clone contigs called “barges” are built from overlapping clones.3

3“Barges are called barges because they are similar to rafts, but are built from larger pieces”
(Kent & Haussler, 2001, page 1544).
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3. Default coordinates are assigned to the initial sequence contigs. The coordi-

nates are based on the barge offset the contig is in plus the start position of

the accession number for the clone.

4. Build the directed raft-ordering graph. This is a graph with two node types:

the rafts and the sequenced clone end points.

5. Connect the rafts in the ordering graph by the addition of mRNA, EST, BAC

end pairs, and additional ordering information. A “bridge” is built out of

alignments of initial sequence contigs with the other additional data. There

are two scoring parameters for bridges: the type of information, for example

mRNA has a very high score, and the strength of the underlying raft, based

on length of the alignment minus tails and extensions. See Figure (2.9).

6. Order the rafts by walking the bridges in order of the default coordinates.

7. After walking the bridges, a sequence path along the rafts is built. The fol-

lowing steps are very important: (1) Find the longest most finished initial

sequence contig passing through each section of the raft. (2) Put the best

initial sequence contig from the first part of the raft from step (1) into the

sequence path. (3) Find an alignment between the best sequence contig from

the first and second parts of the raft. (4) Repeatedly extend the sequence path

until the end of the raft is reached.

8. Build the final sequence for the fingerprint clone contigs by inserting a number

of Ns between raft sequence paths. 100 Ns are inserted between rafts from

the same barge, 50, 000 Ns between bridged barges, and 100, 000 Ns between

unbridged barges.

Interestingly, gaps are present in introns and sequence for expressed genes. As

an example of this scenario, we tried to determine the ratio of ‘gap’ characters to

coding characters in the est human and nr databases. This would give a sense of

the relative numbers of gaps for some protein sequence. However, after removing

the FASTA header from the nr database, there are no gap characters whatsoever.

In est human, there also appear to be no gap characters, but there is a difficulty

when manipulating files larger than the 2GB file size limit.
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Gaps in genomic DNA occur for various reasons. Insertion or deletion of an

entire subsection of DNA may occur as a result of a single mutational event. The

fact that there are biological applications which require gaps is due to extant phe-

nomena in biology which cause “gaps.” Retroviruses insert their own genetic code

into their hosts, thereby inserting a gap into the original contiguity of the host

genome. Translocations occur between chromosomes. During meiosis, genes may

cross-over unequally, causing insertion in one strand of a chromosome, and a dele-

tion in the other. Transposable elements, or “jumping genes,” may be found in

some organisms. DNA slippage occurs if during replication the machinery loses its

place on the template strand, slipping backwards causing sections to be repeated

and insertion/deletion gaps to form.

The role of gaps in alignments has a natural analogy in the case of complementary

DNA (cDNA). cDNA is complementary to mRNA and contains only concatenations

of exons. Thus the cDNA alignment and matching problem consists of trying to

match cDNA with the DNA it came from, while the DNA is full of introns, which

are the gaps we must account for.

The procedure known as “finishing” attempts to remedy the errors caused by

the shotgunning and reassembly of large genomes by systematically comparing the

output to fingerprint contigs and BAC clones (the scaffolding). Special consideration

is often necessary to produce BAC clones with overlaps on both ends, called BAC-

end clones, or BAC-end sequences. Scaffolding is essential to sequencing genomes

with areas of repeated sequence and helps prevent the misassembly of fragments

even when using the best available computer assembly tools. The two contrasting

methods are often called the hierarchical shotgun (HS) assembly and the whole-

genome shotgun (WGS) assembly. These two approaches were used by two big-gun

sequencing operations: the Human Genome Project used HS, and Celera Genomics

used WGS. In the HS assembly, the entire genome is first broken down into a set of

intermediate clones called bacterial artificial chromosomes (BACs).

The article by Waterston et al. (2002) presents one of the most concise treatments

of the problems of WGS versus HS. Sir John Sulston was one of the co-authors, and

as former head of the Sanger Center, he had a vested interest in refuting Celera’s

claims that the WGS approach would work for genomes sizes of order 109 base pairs.
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Lander and Waterson’s article (Lander & Waterman, 1988) presents a mathe-

matical analysis of the expected number of gaps as a function of coverage. This

is fairly straightforward and assumes that fingerprint clone contigs are present in a

geometric distribution.

Let us begin by defining four main variables used in this model for predicting

the number of gaps in a sequencing operation for which coverage is not total:

G haploid genome length in base pairs (bp);

L clone or read length in bp;

N number of clones fingerprinted; 4

T amount of overlap need for detection of overlap.

Several values are based on these empirically determined numbers:

c ≡ LN
G

the coverage;

α ≡ N
G

the probability of starting a new clone, per bp;

θ ≡ T
L

fraction of clone overlap needed for detections.

σ ≡ 1− θ “useful” read length less overlap

To find the expected number of clones in a contig, recall the geometric distribu-

tion P (k) = p(1 − p)k or given a random variable X, with probability function

f(X) = (1− π)πX for X = 0, 1, 2, . . .

is referred to as the geometric distribution with parameter π. It follows that the

expectation value for a contig k with parameter p is:

∞∑
k=o

kp(1− p)k = EX(k) =
1− p

p
. (2.13)

This simplifies since
∞∑

k=o

p(1− p)k = 1

4After making restriction digests, overlapping areas can be inferred. Fingerprint clone contigs
are produced by joining these inferred overlapping clones. Small fingerprint clone contigs are useful
in sequencing projects and have been used to identify non-redundant clones and to seed sequencing
in new regions. A “contig” is the term for one or more overlapping clones.
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to EX(k) = 1 + 1−e−cσ

e−cσ , which means the expected number of clones fingerprinted

is N = ecσ, where c and σ are defined above.

The expected length of the contig is

L[(ecσ − 1)/c+ 1] = L+
L

c
(ecσ − 1).

Before genetic sequencing operations expanded to the capacity and level of au-

tomation necessary for projects like the HGP, scientists considered physical map-

ping, that is genomic mapping, an important part of genetic analysis. The physical

mapping of several organisms, E. coli and Saccharomyces cerevisiae, brought to the

attention of Lander & Waterman (1988) the mathematical problems of genetic map-

ping by fingerprint clones. To find overlaps between clones, a large number of clones

were chosen at random from a library of recombinant clones and those clones with

sufficiently similar fingerprints were inferred to have overlapping sequence.

2.4 Classical string search and alignment algo-

rithms

There are three widely-used and often-cited string matching and alignment algo-

rithms both in the computer science community and in the biology community. Two

of the papers explain methods for string-string and multiple alignment: Needleman

& Wunsch (1970) is rarely used and runs in cubic time; Smith & Waterman (1981)

runs in quadratic time. The term “Needleman-Wunsch” is often used to state the

problem of global alignment, not a solution. The third gives an optimal string search

algorithm: Knuth et al. (1977).

We will describe briefly the “find-the-location-of-a-substring functionality” which

is neither new, nor necessarily complex. In fact it is very easy. There is a C library

function strstr(char *s1, char *s2) which does this, and a simple implemen-

tation is given here. It does exactly what you’d imagine a näıve method would: it

checks to see if the search string is of zero length; then it looks through each letter

of the strings for matches until either the end of the search string or a mismatch

occurs, returning the location of the search string in the database string on success.
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However, the näıve method is just that, näıve, and computer scientists have put

considerable effort into finding optimal string search algorithms.
#undef strstr

/*

* find first occurrence of s2[] in s1[]

*/

char *(strstr) (const char *s1, const char *s2) {

if ( *s2 == ’\0’ )

return ( (char *)s1 );

for (; ( s1 = strchr( s1, *s2 )) != NULL; ++s1 ){

const char *sc1, *sc2;

for ( sc1 = s1, sc2 = s2; ; )

if ( *++sc2 == ’\0’ )

return ( (char *)s1 );

else if ( *++sc1 != *sc2 )

break;

}

return (NULL);

}

As Gusfield points out, “The day may well come when sequence database search

will just involve the repeated application of precise two-string alignments. But

that day is not yet here” (Gusfield, 1997, page 376). This emphasizes a core con-

cept behind any BLAST-like system—BLAST does not perform precise two-string

alignments. It scores alignments across a database using a look-up table, precisely

because it is not feasible to repeatedly apply an alignment algorithm. Very different

methodologies are used when solving global alignment and local alignment. Global

alignments can be optimally computed via dynamic programming, for instance when

performing alignments between more than two strings. There is no doubt a simple

“string-substring” method works for a single application of local alignment between

two sequences, but the day when it can execute a broad sequence database search

is not yet here.

2.5 Mathematical models for genomics

2.5.1 Hidden Markov models

Definition 2.5.1. A stochastic process is a process in which (1) each element of

a set is classified in a distinct state among several fixed states and (2) that these
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elements can switch among states over time.

Definition 2.5.2. A hidden Markov model (HMM) is a doubly-stochastic pro-

cess that is not observable (it is hidden), and that can only be observed through

another set of stochastic processes that produce the sequence of observed symbols.

An HMM consists of a model λ and three parameters:

1. A = state transition probability distribution,

2. B = observation symbol probability distribution in state j,

3. π = the initial state distribution.

Thus,

λ = (A,B, π) and is termed an HMM.

The outcome of the model is a set of observable symbols O—in our case it is

convenient to consider them characters from a finite alphabet Σ = {A,G,C, T,N}.
It is also useful to stipulate some signal processing considerations, as this is signal

processing. Observables can be either time-varying or time-invariant; deterministic

or stochastic. Consider temporal variation in speech processing since it is in general

a simple linear time-invariant system. There is a given sequence of symbols, or

sounds, and each symbol is a linear system representing a short segment of the

process. In the analysis therefore one develops a common short time model for each

steady part of the signal. This re-iterates some of the ideas from Section (1.2).

HMMs have been developed to address three distinct problems: (1) How to iden-

tify steady or distinct periods in the signal (2) How to characterize the sequentially-

evolving nature of these periods (3) What common short time model should be

chosen for the distinct periods. In designing a suitable model one must designate a

size T as the number of states in the model. Also one must choose model parame-

ters, i.e. state transition probabilities, to optimize the model so that it best explains

the observed outcome sequence.

To formalize these three problems, as they are addressed in real-world applica-

tions of HMMs, we identify the following three problems for a model λ = (A,B, π):
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Problem 1 Given a set of observations O = O1, O2, . . . , OT , how do we compute

Pr(O|λ), the probability of the observation sequence—that is the score pro-

duced by the model.

Problem 2 Given a set of observations O = O1, O2, . . . , OT , at hidden level 1 of the

doubly-stochastic model, how do we choose a state sequence I = i1, i2, . . . , iT

which is optimal for some chosen criterion.

Problem 3 How do we adjust the model parameters A,B, π in the model to max-

imize Pr(O|λ).

For Problem 1 we have the following two equations:

Pr(O|I, λ) = bi1(O1)bi2(O2) · · · biT (OT )

is the probability of the observation sequence O for each fixed state sequence I =

i1, i2, . . . , iT . And

Pr(I|λ) = πi1ai1i2ai2i3 · · · aiT−1iT

is the probability of the state sequence I = i1, i2, . . . , iT . Thus the product of

these two is simply the probability that O and I occur simultaneously, the joint

probability.

Pr(O|λ) =
∑
all i

Pr(O|I, λ)Pr(I|λ)

=
∑

i1,i2,...,iT

πi1bi1(O1)ai1i2bi2(O2) · · · aiT−1iT biT (OT ). (2.14)

Equation (2.14) gives the probability of observation O over all states i1, i2, . . . , iT .

The transition to state i2 occurs with probability ai1i2 . A bi1(O1) term is the proba-

bility of generating a symbol Oi. Each step in the summation calculation represents

the probability of a transition; so products under the summand continue until the

last transition from state iT−1 to iT , generating symbol OT with probability biT (OT ).

Even the casual reader will remark that this is computationally infeasible. For

each time it
∣∣
1≤t≤T

there are N possible states, and the products in the summation
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require at least 2T operations. This gives a rough asymptotic upper bound of

O(2T · NT ) operations. Plugging in some small values, say, N = 5 and T = 100,

yields 2 · 100 · 5100 ≈ 1072 computations. However, there are only 1087 elementary

particles in the universe, and those are mostly photons, so in practice Pr(O|λ)

is calculated using the forward-backward procedure which requires only O(N2T )

calculations.

Briefly, the forward-backward procedure can be explained as follows. There

are two variables α, β, the forward and backward variables, respectively.

αt(i) = Pr(O1, O2, . . . , Ot, it = qi|λ)

is the probability until time t of the partial observation sequence O and state qi at

time t. And

βt(i) = Pr(Ot+1, Ot+2, . . . , OT , |it = qi, λ)

is the probability of the partial observation sequence from t+ 1 to T given state qi

at time t. And we relate it to (2.14) as:

Step 1 α1(i) = πibi(O1), 1 ≤ i ≤ N

Step 2 αt+1(j) =
[∑N

i=1 αt(i)aij

]
bj(Ot+1), t = 1, 2, . . . , T − 1 1 ≤ j ≤ N

Step 3 Pr(O|λ) =
∑N

i=1 αT (i).

Description: Step 1 initializes forward probabilities. In Step 2 the product

αt(i)aij is the probability of the joint event of O1, O2, . . . , Ot observed and state qj

reached at time t+1 via qi at time t. Summing the product over N states of qi gives

us the probability of qj at the time t+ 1 with the previous partial observations, αt.

Then, αt+1(j) is multiplied by the probability bj(Ot+1).

Finally, since in Step 2 the range is from t = 1, 2, . . . , T − 1 there is a terminal

forward variable αT (i) which gives the resulting probability Pr(O|λ), for iT = qi and

model λ.

Determining the asymptotically-tight upper bound on the time complexity indi-

cates the necessary range covered, 1 ≤ t ≤ T , 1 ≤ j ≤ N in determining the αt(j)

multiplied with another N elements for the summation in Step 3 yields O(N2T ).
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The backward variable βt(i) is calculated via a similar 2-step procedure replacing

the equations in steps 1–2 above by the equation

βt(i) =
N∑

i=1

aijbj(Ot+1),

where

Step 1 βT (i) = 1, 1 ≤ i ≤ N

Step 2 t = T − 1, T − 2, . . . , 1, 1 ≤ i ≤ N .

Thus, βT (i) is set to 1 for all i. And Step 2 is best illustrated by Figure (2.10). In

order to be in state qi at time t you have to have been in qj at time t + 1, with

probability βt+1(j), and having made a transition with probability aij from state qi

to qj. End forward-backward procedure, onwards.

βt (i)

q i

t t + 1

q j=1

q j=2

q j=N

βt + 1 (j)

Figure 2.10: HMM backward variable.

Problem 2 At the hidden level 1 observation state sequence, O1, O2, . . . , OT ,

how do you choose a state sequence I = i1, i2, . . . , iT which is optimal in a meaningful

sense? That is, what are meaningful optimality criteria? In this example we want

to choose the states it which are individually most likely.

Let,

γt(i) = Pr(it = qi|O, λ)
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be the probability of state qi at time t, for an observation sequence O and model λ.

Recalling the forward-backward procedure, γt(i) can be re-written as

γt(i) =
αt(i)βt(i)

Pr(O|λ)
.

Since αt(i) expresses all the partial observation probabilities of states O1, O2, . . . , Ot

and βt(i) of observed states Ot+1, Ot+2, . . . , OT . The normalization factor Pr(O|λ)

simply assures that for

N∑
i=1

Pr(O1, . . . , Ot|λ)Pr(Ot+1, . . . , OT |λ)

Pr(O|λ)
=

N∑
i=1

γt(i) = 1, (2.15)

since the sum of the probabilities of the states divided by the probability of the

observable O must be 1.

To find the individually most likely state, it, take

it = Max(γt(i)), 1 ≤ i ≤ N 1 ≤ t ≤ T (2.16)

the single maximum probability of state qi at time t. This trivial technique for

finding the optimal state sequence is superseded in practice by the Viterbi algorithm

(Forney, 1974). The Viterbi algorithm is similar to a Kalman filter in that they

both track stochastic processes with pseudo-optimum recursive methods, the one of

Markov models, the other of Gaussians.

Problem 3 How can one adjust the model parameters λ = (A,B, π) to maximize

Pr(O|λ)? This problem is essentially how to optimize model parameters to best

match a training sequence. This involves a re-estimation step on the model λ. Call

λ̄ the re-estimation model. By iteratively replacing λ by λ̄ until a limiting factor

has been reached, we increase the probability for observing outcome O.

One way to do this is by defining a re-estimation parameter ξt(i, j):

ξt(i, j) = Pr(it = qi, it+1 = qj|O, λ), (2.17)

the probability of being in state qi at time t making a transition to qj at time t+ 1.

Returning once again to the forward-backward procedure parameters α, β, con-
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sider qi, qj as intermediate states between t − 1 and t + 2, which they are. Then

if the joint event αt(i) and βt+1(j) are equal we have probability 1, otherwise they

are separated by a parameter aij(Ot+1) < 1 which is the transition state to qj at

time t with symbol Ot+1. αt(i), as before, signifies t accumulated observations from

t = 1, 2, . . . , t and βt+1(j) represents all occurrences from t+ 1 to T , the end of the

observation sequence.

αt (i) βt + 1 (j)

qi qj

aij bj (Ot + 1)

t + 1tt - 1 t + 2

Figure 2.11: HMM joint event. Joint event that the system is in state qi at time
t, and state qj at time t+ 1.

This scenario is expressed by the equation:

ξt(i, j) =
αt(i)aij(Ot+1)βt+1(j)

Pr(O|λ)
(2.18)

and the Figure (2.11). λ is still the model represented by the HMM (A,B, π).

λ̄ is re-estimated using ξt(i, j) in Equation (2.18) and the conglomeration of the

Baum-Welch re-estimation formulas:

• π̄ = γ1(i) 1 ≤ j ≤ N ,

• āij =
∑T−1

t=1 ξt(i, j)
/∑T−1

t=1 γt(i),

• b̄j(k) =
∑T−1

t=1
Ot=k

γt(j)
/∑T

t=1 γt(j).
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L.R. Rabiner has written extensively on applications of HMMs and I have drawn

heavily on his work. There are several extant implementations using HMMs for

multiple sequence alignment: HMMER http://hmmer.wustl.edu/; SAM

http://www.soe.ucsc.edu/research/compbio/sam.html; and HMMpro

http://www.netid.com/html/hmmpro.html.

2.5.2 Identification of genes in human genomic DNA

Burge’s methodology, upon which he based his program GENSCAN, is essentially

the same as the framework described above for hidden Markov models (Burge, 1997;

Burge & Karlin, 1997).

While the abstract theory of HMMs is given above, actually choosing a model

and the state transitions for the biological “system” of a genome like the human

genome, complete with genes, exons, introns, promoters, regulation regions, etc., is

complex.

Burge determined his model parameters from non-redundant sets of human sin-

gle and multi-exon genes. These sets were compiled from the GenBank, and were

processed by the GeneParser test sets and the PROSET program. The model pa-

rameters consist of, e.g., state transition and initial probabilities and splice site

models.

The following list and Figure (2.12) provide a more explicit description of the

GENSCAN HMM model:

1. intergenic region;

2. 5’ untranslated region (from transcription start to translation initiation);

3. single-exon, intronless gene (translation start to stop codon);

4. initial exon (translation start to donor splice site);

5. phase k internal exon (acceptor splice site to donor splice site);

6. 3’ untranslated region (from after stop codon to polyadenylation signal);

7. polyadenylation signal;

8. phase k intron.

http://hmmer.wustl.edu/
http://www.soe.ucsc.edu/research/compbio/sam.html
http://www.netid.com/html/hmmpro.html
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Figure 2.12: GENSCAN HMM gene functional units. In this diagram circles
and diamonds represent functional units, HMM states, of genes or genomic regions:
N , intergenic region; P , promoter; F , 5′ untranslated region; Esngl, single-exon,
intronless gene; Einit, initial exon; Ek, phase k internal exon; Eterm, terminal exon;
T , 3′ untranslated region; A, polyadenylation signal; Ik, phase k intron. The upper
half of the figure corresponds to the forward strand (+), and the lower half to the
reverse, complementary strand (-).
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2.5.3 Statistical & probabilistic sequence analysis

The probabilistic model for match scoring is very well-developed. See for example

Dembo et al. (1994) in the Annals of Probability. We would like to give an example

of one equation from this foundational probabilistic paper on critical phenomena for

sequence match scoring. It is worth remarking that even highly technical statistics,

for example the recent work of Siegmund (Storey & Siegmund, 2001), still can’t take

into account the presence of gaps. And as we have repeatedly demonstrated any

viable model must allow for gaps.

Here is Dembo’s Equation (1):

γ∗(µX , µY ) ≡ supν∈M1(Σ)J(ν) ≡ supν∈MF (Σ)J(ν). (2.19)

Definitions:

ΣX and ΣX are the alphabetic sequences.

µX and µY refer to the probabilities on ΣX and ΣX .

γ∗ is a constant expressed in terms of relative entropy, as in Equation (2.19).

M1(Σ) is the set of all probability measures on Σ.

MF (Σ) is the subset of probability measures ν satisfying Eν(F ) ≥ 0.

E is the expected score for some parameters.

F (x, y) is the score for the letter pair (x, y).

ν and µ are the parameters of the relative entropy denoted by,

H(ν|µ) =
N∑

i=1

ν(bi) log
ν(bi)

µ(bi)
.

J : M1(Σ) −→ [−∞,∞)

J(ν) =
Eν(F )

H∗(v|µX , µY )
.





Chapter 3

Experimental methods

Ohne Wein und ohne Weiber,

hol’ der Teufel uns’re Leiber!

—Johann Wolfgang von Goethe1

3.1 Algorithms

Rajasekaran presents a classical version of FFT alignment with a position-specific

scoring matrix (PSSM).

Definition 3.1.1 (Position-specific scoring matrix). Let A = A0A1 . . . Al−1 be

a sequence in alphabet Λ, and S0, S1, . . . , Sm−1 be a sequence of scoring functions,

then

Sk : A
k−→ range(Sk); Sk(a) ∈ R

· · · S0 · · ·
S1

...

Sm−1

 .

And there exists a position-specific match score z = (z0, z1, . . . , zn−1) which is cal-

culated by summing over the j-th column of the PSSM and the correlated vector,

1 “Without wine and without women,
The devil has taken our loves!”
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as in Equation (3.1) below. In effect the PSSM keeps a history of match scores at

different positions.

Scoring matrices improve the sensitivity of nucleotide similarity searches by cal-

culating a score which indicates the degree of similarity between to sequences. The

scoring scheme is fairly arbitrary, but traditional BLAST uses +5 for a match and

−4 for a mismatch. PSSM’s compare to the PAM matrices, Section (2.3.1), in that

they both score alignments and store the scores in a matrices. Scoring matrices are

a type substitution matrix.

The difficulty with developing an effective model for score values in scoring ma-

trix algorithms is that, “one must be able to vary the gap and gap size penalties

independently and in a query-dependent fashion in order to obtain the maximal

sensitivity of the search” (Gusfield, 1997, page 279). In practice this is almost im-

possible, because you can’t re-test your PSSM on every input data set. What is

done instead is to do training runs on a set of input data to determine some values

for the PSSM weights which give an acceptable sensitivity. The NCBI scientists did

this to find the weights used above, and they are hard-wired as the defaults for the

BLAST program. Given the wide range of applications for which BLAST is used,

individual users are given the option of redefining the match/mis-match values for

particular runs.

Like in Figure (3.1), for every set of sequences A and B there is a PSSM S.

Formally, S = S0, S1, . . . , Sm−1 is a sequence of column vectors, with a j-th linear

alignment of A and S.

The position-specific match score for z = (z0, z1, . . . , zn−1) is

zj =
∑

k

Sk′(Ak) (3.1)

and expresses formally the calculation we ran through in the caption to Figure

(3.1). What it represents are the values Sk(a) (a ∈ Λ), the k-th column of the

PSSM, summed over all aligned pairs (Ak, Sk′) where Ak is the k-th element of the

sequence A and Sk′ is the column of the PSSM evaluated on Ak, Sk′(Ak).

The matrix S is k-columns by m-rows. The dimension of the sequence A is l−1,

dimension of the sequence B is m− 1, and the dimension of the match score z (the
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A A T G C G

B T G T G A

S A -4 -4 -4 -4 5

C -4 -4 -4 -4 -4

G -4 5 -4 5 -4

T 5 -4 5 -4 -4

Figure 3.1: Position-specific scoring matrices. The figure represents the gapless
global alignment between string sequences A = ATGCG and B = TGTGA. For
a pairwise scoring, the old BLAST scoring method defaults to +5 for a match and
−4 for a mismatch. Thus, the global alignment A and B shown has four matching
letters and a score of 5+5−4+5 = 11. The PSSM S represents the pairwise scoring
when a sequence is aligned with B. S can also be aligned with sequence A and the
result 5 + 5 − 4 + 5 = 11 is necessarily the same as the pairwise score between A
and B. An example of local alignment, as opposed to global alignment, generated
by the same two sequences is: take subsequences GCG in A and GTG in B. Local
alignments ignore any other relationships, like PSSM scores or other letters outside
the subsequences. Gapped local alignment appears impossible with the FFT. See
the MAFFT discussion in Section (2.2) for details on global alignment using FFT.
This figure was adapted from (Rajasekaran et al., 2002).

correlation value) is n− 1. The index j has a range 0 ≤ j ≤ n− 1 corresponding to

z. Therefore, the sum over the free index k (not the dimension of the columns) runs

from MAX(0,j−(m−1)), covering each of the rows for each j (unless j−(m−1) = 0),

to MIN(l−1,j), the smaller dimension of A or z. k′ is defined as k′−k ≡ m−1− j.

Fix a letter a in alphabet Λ. Let xa = (I(a,A0), I(a,A1), . . . , I(a,Al−1)) be the

indicator vector of letter a in sequence vector A. Here, I(a, b) is a pairwise scoring

matrix for exact matches. This is the regular pairwise alignment measure, so for

two letters a, b, if a = b, I(a, b) = 1, else I(a, b) = 0. The matrix I is symmetric,
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that is I(a, b) = I(b, a).

Let ya = Sa = (S0(a), S1(a), . . . , Sm−1(a)) be the row vectors 0, . . . ,m− 1 of the

PSSM S. The cross-correlation za = (za,0, za,1, . . . , za,n−1) of the query and database

vectors xa and ya is the position-specific match score for letter a.

The j-th coordinate of the position-specific match score for the letter a is there-

fore,

zaj =
∑

k

I(a,Ak)Sk′(a). (3.2)

Algorithm 3.1.2 (Rajasekaran’s Algorithm 1). Vector xa indicates exact matches

between a fixed letter a and An. So xa = (I(a,A0), I(a,A1), . . . , I(a,Al−1)) is the

indicator vector of letter a in sequence vector A. Vector ya corresponds to row a

of PSSM S, so ya = Sa. Every position in S{0≤n≤m−1} is a function of letter a,

thus Sa = (S0(a), S1(a), . . . , Sm−1(a)). The only computation then is to compute

the cyclic cross-correlation of xa and ya,

Zcyc = X�YR. (3.3)

This results in the cross-correlation vector za = (za,0, za,1, . . . , za,n−1). The j-th

coordinate of the position-specific match score for the letter a is therefore,

zaj =
∑

k

I(a,Ak)Sk′(a). (3.4)

Algorithm 3.1.3 (Rajasekaran’s Algorithm 2). While Algorithm 3.1.2 doesn’t

take advantage of the complex-plane base encoding from Cheever et al. (1991) this

algorithm uses the 2-vector complex plane encoding from Figure (3.4). Suppose

letters a, b ∈ Λ. Then there exists an indicator vector for the two letters, xab in a

sequence A. Then

xab,j = I(a,Aj) + iI(b, Aj) (3.5)

expresses the coordinates of the indicator vector for the j-th element of A. With

Sa and Sb defined as above, let yab = Sa − iSb. Then the cross-correlation zab =
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(zab,0, zab,1, . . . , zab,n−1) of xab and yab has the coordinates

zab,j =
∑

k

{I(a,Ak)Sk′(a) + I(b, Ak)Sk′(b)} − i
∑

k

{I(a,Ak)Sk′(b) + I(b, Ak)Sk′(a)}

(3.6)

Comparing this with Equation (3.4) shows that Re(zab,j), the real part, equals za+zb

from Algorithm 3.1.2. The CPU time is again O(Ln log n).

FFT convolution can be seen as a divide-and-conquer optimization of the “shift-

and” algorithm to count string matches. Shift-and is in fact a very easy way to

solve the match-count problem. The match-count problem is as follows. Consider

two sequences A = A0A1 . . . Al−1 and B = B0B1 . . . Bl−1. For each linear alignment

between the two sequences, compute a match count (a, b), this amounts to counting

the number of times the pair (a, b) occurs for an offset i. Most generally, we find

the cyclic auto-correlation, with indices modulo n+m by,

Va(α, β, i) =

j=n+m−1∑
j=0

ᾱ(j)× β̄(i+ j). (3.7)

And
z−1∑
j=0

X(j)× Y (i+ j) = W (i), (3.8)

the cyclic correlation of X & Y for a z-length real vector W (i) where indices are all

mod z. In fact, computing the vector Va(α, β) is precisely the cyclic correlation of

the two padded vectors ᾱa and β̄a. Thus, the following relations hold: W = Va(α, β),

X = ᾱa, Y = β̄a, and z = n+m.

The equivalent statement in terms of FFT-convolution requires 3 FFTs and runs

in time O(N logN). From Crandall & Pomerance (2001),

Theorem 3.1.4 (Convolution theorem). Let signals x, y have the same length

D. Then the cyclic convolution of x, y satisfies

x× y = DFT−1(DFT (x) ∗DFT (y)), (3.9)
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or written in summation form

(x× y)n =
1

D

D−1∑
k=0

XkYkg
kn.

offset i=2 1 0 1 1 0 0 0 1 0 0 0 1 0
AND 1 0 0 1 0 1 1 0

1 1 =2Σ

Figure 3.2: Shift-and match count algorithm. Shift-and is an easy way to find
string similarity. Note for example that most processors have machine operations
for “shift-right(accumulatorA,n)” and “bit-wise-AND(accumulatorA,operand).”

In Figure (3.2) only roughly one fourth of the necessary operations are repre-

sented. The first step in shift-and-ing nucleotide sequences is performing a binary

encoding, for n,m-tuples α and β:

α = {agc . . . t} −→ 101100,

β = {acc . . . g} −→ 100100110.

Breaking down each of the four component vectors, we get a total correlation

value V (α, β, i) for offset i:

V (α, β, i) = Va(α, β, i) + Vc(α, β, i) + Vg(α, β, i) + Vt(α, β, i). (3.10)

Equation (3.10) is a measure of local alignment, that is to say a substring α and a

search database β. One can similarly have a match count value for an i-independent

global alignment. The total correlation for such a global alignment is then, for all

{a, g, c, t} components, equal to the following sum:

V (α, β) = Va(α, β) + Vc(α, β) + Vg(α, β) + Vt(α, β). (3.11)
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3.2 Compression step

Cheever et al. (1991)’s main interest was implementing FFT correlation on special-

ized hardware, for example on DSP processors with 24-bit word sizes. His article

was among the first to demonstrate that by different encodings of the bases, a reduc-

tion in the number of FFTs is possible. For instance, let α = a, c, t, a, t, g, a, t, t and

β = c, t, g, a, g, c, a, c, g. Then computing the number of a matches by converting

the sequences to binary (all a −→ 1, else x −→ 0) yields α = 1, 0, 0, 1, 0, 0, 1, 0, 0 and

β = 0, 0, 0, 1, 0, 0, 1, 0, 0. Repeating the process for all four bases results in a total

of eight vectors/sequences. So it would take eight FFTs and one inverse FFT to

compute the alignment.

There are two clever schemes to reduce the number of signal vectors which need

to be Fourier-transformed. The so-called two-vector complex-plane base encoding

scheme reduces the number of FFT calculations to four (plus one FFT−1). For

α and β above, one can encode the bases via the rule, g −→ i and a −→ 1, where

i ≡
√
−1. This coding for sequence α results in α{g,a} = 1, 0, 0, 1, 0, i, 1, 0, 0 and

likewise for the other two bases, c −→ i and t −→ 1, α{c,t} = 0, i, 1, 0, 1, 0, 0, 1, 1.

The four FFTs on the input signals and the inverse FFT on the sum of the dyadic

products of the corresponding encodings results in the cyclic cross-correlation W .

A much-simplified though fully-functional C-format example of this is in Appendix

(B.9).

W = FFT−1[FFT (α{g,a})� FFT (αR
{g,a}) + FFT (β{c,t})� FFT (βR

{c,t})]. (3.12)

The one-vector complex-plane encoding which we use goes one step further and

allows for the encoding of a nucleotide sequence with four letters as one signal vector:

a −→ 1, c −→ −i, g −→ i, and t −→ −1. This requires only 3 ∗ N logN operations.

Cheever et al. (1991) noted that this approximation would not be exact, but we

have not observed a noticeable difference in the error between the three encoding

methods. It would perhaps be interesting to do a more thorough analysis of the

numerical error introduced by multiple applications of the FFT to the different n-

base vector encodings. Software precision, like that implemented in Mathematica,

would be a very desirable component of such systems. Software precision in compiled
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languages tends to be very difficult—note for example that multiplication of double-

precision floating-point numbers doesn’t commute on Intel processors (basically the

rounding of the least significant digits is inconsistent).

α = a, c, t, a, t, g, a, t, t

A 100100100

C 010000000

G 000001000

T 001010011

Figure 3.3: 4-Vector complex-plane base encoding

i y

x

G: i

A: 1

i y

x

C: i

T: 1

Figure 3.4: 2-Vector complex-plane base encoding

3.3 Processing & pre-processing

Benson (1990b) made some interesting observations on probabilities of finding spe-

cific sequences of letters in GeneBank sequences. He noted that since in a given

sequence a particular letter is often much more abundant than dictated by chance,

analysis by orthogonal polynomials which assumes a more or less stationary dis-

tribution must take into account a non-standard weighting factor. Nucleic acids

that are most abundant have an increased matching probability. As one observes a
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i y

x

G: i

T: -1 A: 1

C: -i

Figure 3.5: 1-Vector complex-plane base encoding

particular sequence, the alphabetic densities vary over the length of the sequence.

These non-stationary densities may cause false “matches.” Therefore larger weights

are assigned to less probable matches.

To this end, for a match between two letters with probabilities p1 and p2, we

designate a weighting factor

W = 1/p1p2. (3.13)

Instead of merely counting the number of matching letters, via this method the total

of the weight factors W corresponding to the individual matches is calculated. If

a single match is statistically independent, W would have an expected value of 1.

Necessarily if the probabilities of letters p1 and p2 have been correctly determined,

for an alignment of two sequences of length L, the expected total of the weights

also equals L. We can consider L a normalization factor for an alignment with un-

weighted match values. That is, if the nucleotide densities were equally distributed,

the probabilities would be the same and before returning the total alignment value,

it would be necessary to divide by L. The above modification of the basic method

thus correctly adjusts the scores for sequences with non-stationary densities.

Let S1 and S2 be alphabetic sequences of length L. Generally we can think of the

sequences as being circular. The coordinate system is defined relative to S1. Switch-

ing the coordinate system to S2 doesn’t result in any lost (or gained) information,

but it requires switching the reversal when accessing the correlation vector. The
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density of the particular sequences or Fourier components can be modelled as mass

densities. By using orthogonal polynomials it is also possible to do regressions on the

“mass densities” which an alignment represents. Benson states, “Any discrete mass

distribution can be approximated by a continuous density function and the goodness

of the approximation is what we refer to as the ‘resolving power’”(Benson, 1990b,

page 6307). The alignment values can be represented as mass distributions in a

sinusoidal graph covering an angle θ equal to the dimension of the DFT convolution

vector.

The discrete mass distribution D(x) is

D(x) = a1δ(x− x1) + a2δ(x− x2) + . . .+ amδ(x− xm),

where ai are discrete masses, and the xi are match locations for the alignment on

the interval [c, d]. The Fourier coefficients Fi are

Fi =

∫ d

c

D(x)φi(x)w(x)dx

where φi(x) are the orthogonal functions for a weight distribution function w(x).

From DFT convolution of the i-th alignment we have match locations at integers

{xij}0≤xij<L j = 1, 2, . . . ,mi.

mi is the i-th component of the convolution. The Fourier coefficients for the mass

density regression are:

Pi = mi/L

Qi = (2/L)

mi∑
j=1

sin(2πxij/L)

Ri = (2/L)

mi∑
j=1

cos(2πxij/L).

These constant coefficients form a total mass density equal to

Pi +Qi sin(2πx/L) +Ri cos(2πx/L). (3.14)
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Define the indicator sequence e(S, α) by

ej(S, α)

 1, if the j-th letter of S is an α;

0, otherwise.
(3.15)

Define the tally of a sequence S by a(S, r, α), where r is a sequence vector we

choose. Then,

aj(S, r, α) =

 rj, if the j-th letter of S is an α;

0, otherwise.
(3.16)

Define real sequences r′j2 and r′′j by

r′j2 = sin(2π(j + 1/2)/L)

r′′j = cos(2π(j + 1/2)/L).

Then the i-th component of the convolution

(2/L)a(S1, r
′, α) ∗ e(SR

2 , α)

is equal to Qi, and the i-th component of the convolution

(2/L)a(S1, r
′′, α) ∗ a(SR

2 , α)

is equal toRi. This is remarkable because one can, with slight modification, calculate

as many terms as one likes of the Fourier series via FFT convolution. So a high

order regression is not an impossibility.

A sinusoidal approximation using the first three terms of the Fourier series can

be used to find the point mass distribution. The approximation is useful to us as it

is: (1) optimal in the sense of least squares;2 and (2) can be computed using an FFT.

This is not to be confused with the DFT, here we are explicitly using expansions of

Fourier coefficients for weight values.

When running BLAST it is necessary to first run the formatdb program on

2The least square approximation entails approximating a function ξ(f) with some constants,
say for a quadratic, a, b, c, such that ξ(f) ∼= af2 + bf + c.
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the database one wishes to query. Similarly it would be possible to increase the

speed of the FFT analysis by formatting the database in an optimized format.

Such pre-processing could also aid in finding relationships between the different

locations of the correlations across a very large database, not just the name of the

tagged sub-sequence where the correlation was found. A logical design for a sequence

comparison and alignment program with the necessary functionality of returning the

associated values for the “name, location, and accession number” for an alignment

requires pre-formatting in a database structure. This is one step towards making a

functional query/lookup structure, and is a functionality we did not implement in

our tests. It is much simpler in the case of the global alignment problem that the

MAFFT designers tackled—no database is necessary since the sequences in question

are all treated individually.



Appendix A

Quantum search, quantum Fourier

transform, and alignment

A search algorithm is an alignment-independent comparison, that is it determines

matches or approximate matches (think of egrep(1), for example), it does not find

sequence homology between a set of n-tuples. Quantum Fourier transform convolu-

tion can be used to find sub-sequences, or common local alignments between several

sequences, with few modifications from the standard Fourier transform. The present

author is aware of no quantum algorithms that perform alignment or global align-

ment. Computer graphicists have been interested in quantum algorithms for several

specific applications. Shor’s algorithm can calculate radiosity and Z-buffering, and

Deutsch’s algorithm allows double-speed communication on noisy communication

channels. We are interested in quantum algorithms to find a remarkably efficient

solution to protein and DNA sequence search problems.

There are essentially three classes of quantum algorithms presently in the liter-

ature:

1. Shor’s algorithm for quantum Fourier transform, computing the discrete log-

arithm, and factoring large numbers;

2. Deutsch’s algorithm for fast communication via quantum interference;

3. Grover’s algorithm for quantum searching, running in time O(
√
N).

Grover’s algorithm has mainly theoretical applications to substring search
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and BLAST-like alignment problems. A striking reason why it is a theoretical

approach is that the largest number of coherent qubits that have been prepared in

the laboratory to date is ˜12. A scientist could perform such a small search by

observation if it weren’t the case that the number of effective computational basis

states in an n qubit system is 2n. So a 12 qubit system has 212 = 4096 states.

Loading the “registers” with the nucleic acids, xi ∈ {1, i,−1,−i}, on the order of

several thousand is a current experimental difficulty.

The search algorithm determines the location of an element in a set, with the

possible extension to multiple elements. For example, in a system with n = 2 qubits,

and the set x = {0, 1, 2, 3}, we are looking for a unique value x0 such that f(x0) = 1,

otherwise f(x) = 0. The average number of evaluations needed to find such a value

x0 in a random set on a classical computer is 9/4 = 2.25. Grover’s algorithm on a

quantum computer can perform this search in a single evaluation.

There are seven steps to the experimental implementation of Grover’s algorithm,

for example using nuclear magnetic resonance (NMR), see e.g. (Chuang et al., 1998).

But these steps can be separated into the explicit enumeration of the subroutine for

the Grover iteration/operator G which has four steps, and the algorithm itself which

only has four steps, one of which is applying G.

Just as in the short example above, we are looking for a value x0 in the range

0 ≤ x < 2n for which f(x0) = 1, otherwise f(x) = 0. A black box oracle O performs

the transformation O|x〉|q〉 = |x〉|q ⊗ f(x)〉. Superposition is one of the most basic

quantum transformations. The Hadamard transform, or “gate,” H⊗n applied to n

qubits initially in state |0〉 results in the superposition

1√
2n

∑
n

|x〉. (A.1)

The tensor product ⊗n means heuristically “combine the n states.” Thus the trans-

form H produces an equal superposition of 2n computational basis states using only

n gates—what remarkable efficiency!

The Grover iteration G used below has four steps:

1. Apply the oracle O.

2. Apply the Hadamard transform H⊗n.
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3. Perform the conditional phase shift:

|x〉 −→ −(−1)δx0 |x〉

|x〉 −→ −|x〉 for x > 0

|0〉 −→ |0〉.

4. Apply the Hadamard transform H⊗n again.

The Hadamard transform H prepares the uniform superposition state |ψ0〉 by

rotating each qubit from the state |0〉 to (|0〉 + |1〉)/
√

2. It can be written out

explicitly for the 4-state example system above:

|ψ0〉 = H|ψin〉 =
1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




1

0

0

0



=
1

2


1

0

0

0

 . (A.2)

Quantum search algorithm: The input to the algorithm is n+1 qubits in the

state |0〉. The runtime for the algorithm is O(
√

2n), as the range above is 0 ≤ x < 2n.

The four steps are as follows:

1. Initialize the states

|0〉⊗n|0〉.

2. Apply H⊗n to the first n qubits, and a conditional Hadamard to the last qubit

1√
2n

2n−1∑
x=0

|x〉
[
|0〉 − |1〉√

2

]
.
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3. Apply the Grover iteration R ≈ π
√

2n/4 times

[(2|ψ〉〈ψ| − I)O]⊗R 1√
2n

2n−1∑
x=0

|x〉
[
|0〉 − |1〉√

2

]
≈ |x0〉

[
|0〉 − |1〉√

2

]
.

4. Measure the first n qubits and return x0

−→ x0.

Grover suggested that while the algorithm in its most general formulation can

only search for a unique state satisfying the constraint, it can be easily modified

to search for multiple states. One way to achieve this is to repeat the experiment

and check the range of degeneracy (degeneracy between states occurs when they

have linearly independent eigenvectors with the same eigenvalue). By checking the

degeneracy of solutions in the range (k, k + 1, . . . , 2k), one would be able to tell

whether there were multiple occurrences of a state. For a system of N states it would

take logN repetitions to perform the degeneracy checking. Another possibility for

checking for multiple occurrences of a state is to introduce a random perturbation

to remove the degeneracy with a very high probability. Detailing this technique

beyond the scope of this thesis.
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Implementation of routines

The following are C, Java, and Mathematica format implementations of some of the
methods documented in Chapters 1–3.

B.1 Correlation algorithm in Mathematica

len = 2048;

w = 5;

d = Table[Exp[2 Pi I Random[Integer, {0,3}]/4], {len}];

q = Table[If[j <= w, Exp[2 Pi I Random[Integer, {0, 3}]/4], 0], {j, 1, len}];

Take[q, {1, w}]

corr = Sqrt[len]*InverseFourier[Fourier[d]*Conjugate[Fourier[q]]];

ListPlot[Abs[corr], PlotJoined -> True, PlotRange -> All];

B.2 cleanDNA.c

#include <stdlib.h>

#include <stdio.h>

#include <strings.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#define TRUE 1

#define FALSE 0

#define DEBUG FALSE 10

#if DEBUG
#define DEBUGF(a. . .) do{fprintf(stderr, "%s[%d]", FILE , LINE ); \
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fprintf(stderr, ##a);}while(0)
#else
#define DEBUGF(a. . .)
#endif

int main( int argc, char *argv[ ] ) {
FILE *fp in, *fp out; 20

char ch;

if( argc != 3 ){
printf("usage: %s dirty_dna_file clean_dna_file \n"

"convert a dirty DNA file {agctAGCT} to a clean one\n"
"(remove line numbers, spaces, line breaks, etc.)", argv[0]);

exit(1);
}
if( (fp in = fopen( argv[1], "r" )) == NULL ) {

fprintf( stderr, "fopen \"%s\" failure\n", argv[1]); 30

exit(1);
}
if( (fp out = fopen( argv[2], "w" )) == NULL ) {

fprintf( stderr, "fopen \"%s\" failure\n", argv[2]);
exit(1);

}

while( (ch = fgetc(fp in)) != EOF ) {
switch (ch){
case ’A’: case ’a’: 40

fprintf( fp out, "A");
break;

case ’G’: case ’g’:
fprintf( fp out, "G");
break;

case ’C’: case ’c’:
fprintf( fp out, "C");
break;

case ’T’: case ’t’:
fprintf( fp out, "T"); 50

break;
default:

/* some non-AGCT input in file ignored */
DEBUGF("some non-AGCTagct in input file ignored, ch = %c \n", ch);
break;

}
}

fclose( fp in );
fclose( fp out ); 60

return 0;
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}

B.3 replaceplain.c

#include <stdlib.h>

#include <stdio.h>

#include <strings.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#define TRUE 1
#define FALSE 0
#define DEBUG FALSE 10

#if DEBUG
#define DEBUGF(a. . .) do{fprintf(stderr, "%s[%d]", FILE , LINE ); \

fprintf(stderr, ##a);}while(0)
#else
#define DEBUGF(a. . .)
#endif

int main( int argc, char *argv[ ] ) {
FILE *fp in, *fp out; 20

char ch;

if( argc != 3 ){
printf("usage: %s orig_file new_file \n"

"convert a DNA file to 1-vector complex plane base encoding \n"
"Mathematica format file: \n"
"C := -i := \\(-\\[ImaginaryI]\\), G:= i := \\[ImaginaryI], \n"
"T := -1 := \\(-1\\), A := 1, \n"
"and { a,b,. . . } list. \n", argv[0]);

exit(1); 30

}
if( (fp in = fopen( argv[1], "r" )) == NULL ) {

fprintf( stderr, "fopen orig_file %s failure\n", argv[1]);
exit(1);

}
if( (fp out = fopen( argv[2], "w" )) == NULL ) {

fprintf( stderr, "fopen new_file %s failure\n", argv[2]);
exit(1);

}
40

fprintf( fp out, "{");
while( (ch = fgetc(fp in)) != EOF ) {

switch (ch){
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case ’A’: case ’a’:
fprintf( fp out, "1, ");
break;
/* printf(“got an A!!\n”); */

case ’G’: case ’g’:
fprintf( fp out, "\\[ImaginaryI], ");
break; 50

case ’C’: case ’c’:
fprintf( fp out, "-\\[ImaginaryI], ");
break;

case ’T’: case ’t’:
fprintf( fp out, "(-1), ");
break;

default:
/* some non-AGCT input in file ignored

if (!(((ch == ’a’) | | (ch == ’g’) | | (ch == ’c’) | | (ch == ’t’)))) */
DEBUGF("some non-AGCT in input file ignored, ch = %c \n", ch); 60

break;
}

}

fprintf( fp out, "}");
fclose( fp in );
fclose( fp out );

/* delete final comma . . . */
execl("commakill.sh","./commakill.sh", argv[2], (char *)0); 70

return 0;
}

B.4 replacesize.c

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <strings.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

/*
Author: Russell Hanson 10

2002.11.14
Reed College

compile with:
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gcc replacesize.c -o replacesize -Wall -ansi -pedantic

standard usage:
1985 r@hale ˜> ./replacesize DNA-query.txt DNA-query-math.txt DNA-data.txt

// uncomment for (inverted) Gaussian response function 20

if (i <= N/2) {
response[i] = exp(-0.5*sqr(i/0.05/N))/0.05/N/sqrt(2*Pi);
response[N-1-i] = -response[i];

}

$ cat commakill.sh
#!/bin/sh

awk ’{gsub(“, }”, “ }”, $0); print > FILENAME}’ $1
30

*/

typedef int boolean;
#define TRUE 1
#define FALSE 0
#define DEBUG FALSE

#if DEBUG
#define DEBUGF(a. . .) do{fprintf(stderr, "%s[%d]", FILE , LINE ); \

fprintf(stderr, ##a);}while(0) 40

#else
#define DEBUGF(a. . .)
#endif

/* PROTOTYPES */
char *alloc (register int bytes);
int StringWidth(char *s);
char *progName( char *str );

/* DEFINES */ 50

#define max math size 32 /* theo. number of bytes the “largest” (usually
mathka) output string corresponds to */

int main( int argc, char *argv[ ] ) {
FILE *fp in, *fp out;
char ch; int i,j,k;
unsigned int Acount = 0, Gcount = 0, Ccount = 0, Tcount = 0, AGCTcount = 0;
double Aratio = 0, Gratio = 0, Cratio = 0, Tratio = 0;
double Aweight = 0, Gweight = 0, Cweight = 0, Tweight = 0; 60

struct stat orig statbuf;
struct stat new statbuf;
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struct stat data statbuf;
unsigned long int in filesize = 0; /* DNA query file */
unsigned long int out filesize = 0; /* DNA query filesize after processing */
unsigned long int data filesize = 0; /* DNA data filesize (from argv[3]) */
unsigned int padsize = 0; /* data filesize - AGCTcount */
char *parsebuf;

if( argc != 4 ){ 70

printf("usage: %s DNA_query_file DNA_query_file_math DNA_data_file\n"
"Convert a DNA_query_file to 1-vector complex plane base encoding \n"
"padded for dyadic multiplication with data_file and in Mathematica format: \n"
"C := -i := \\(-\\[ImaginaryI]\\), G:= i := \\[ImaginaryI], \n"
"T := -1 := \\(-1\\), A := 1, \n"
"and { a,b,. . . } list. \n", progName( argv[0] ));

exit(1);
}
if( (fp in = fopen( argv[1], "r" )) == NULL ) {

fprintf( stderr, "fopen orig_file %s failure\n", argv[1]); 80

exit(1);
}
if( (fp out = fopen( argv[2], "w" )) == NULL ) {

fprintf( stderr, "fopen new_file %s failure\n", argv[2]);
exit(1);

}

/*
New usage: instead of specifying the DNA source file size as the 3rd
argument, simply give the file name , and stat() will calculate the 90

filesize for you. Watch out for sparse files. */
stat( argv[3], &data statbuf );
data filesize=data statbuf.st size;
printf("DNA_data_file \t\"%s\" size = %8ld bytes \n", argv[3], data filesize);
/*

Old usage: data filesize = (unsigned long int) atol(argv[3]) ; NUL
terminated DNA-source added one by hand on command line, even though the
NUL will always be there */

/* get orig file size for max buffer size; allocate parsebuf */ 100

stat( argv[1], &orig statbuf );
in filesize=orig statbuf.st size;
printf("DNA_query_file \t\"%s\" size = %8ld bytes \n", argv[1], in filesize);

parsebuf = (char *) alloc( sizeof(char) * data filesize );

/*
Read agctAGCT’s from fp in to parsebuf, count up the total agctAGCT’s
DNA-query.txt may be ( uppercase | | lowercase )

*/ 110
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while( (ch = fgetc(fp in)) != EOF ) {
switch (ch){
case ’A’: case ’a’:

strcat( parsebuf, "A");
Acount++;
break;

case ’G’: case ’g’:
strcat( parsebuf, "G");
Gcount++;
break; 120

case ’C’: case ’c’:
strcat( parsebuf, "C");
Ccount++;
break;

case ’T’: case ’t’:
strcat( parsebuf, "T");
Tcount++;
break;

default:
/* some non-AGCT in input file ignored */ 130

DEBUGF("some non-AGCT in input file ignored, ch = %c \n", ch);
break;

}
}
AGCTcount = Acount+Gcount+Ccount+Tcount;
if(DEBUG){

fputs(parsebuf, stdout);
printf("\n AGCTcount = %d\n", AGCTcount);

}
/* remove mean above zero excess matches 140

A = 0.25/0.35= 0.71;
C = -0.25i/0.18 = -1.38i, etc.

*/

Aratio = (double) Acount/AGCTcount;
Gratio = (double) Gcount/AGCTcount;
Cratio = (double) Ccount/AGCTcount;
Tratio = (double) Tcount/AGCTcount;
DEBUGF("Aratio = %f\n", Aratio);

150

Aweight = 0.25/Aratio;
Gweight = 0.25/Gratio;
Cweight = 0.25/Cratio;
Tweight = 0.25/Tratio;
DEBUGF("Aweight = %f\n", Aweight);

if (data filesize < AGCTcount) /* data smaller than query!! */
exit( printf("ERROR: \t data smaller than query!\n"
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"\t make sure you’re actually searching for something\n") );
padsize = abs(data filesize − AGCTcount); 160

DEBUGF("padsize = %d \n", padsize);

/*
strcat() the extra padding to parsebuf

*/

for(i=0; i<padsize; i++){
strcat( parsebuf, "0" ); /* forget the padded AGCT’s, use zeros */
DEBUGF("padsize i = %d\n", i);

} 170

/*
Write the output file.
Sample mathka format:
Cell[BoxData[ \({4.5*1, \(-\((3.2)\)\)*\[ImaginaryI],
2.5*\[ImaginaryI], \ \(-\((1.2)\)\)*1}\)], “Input”]

*/
j = 0; /* count the number of fprintf()’s */
/* printf(“test setting {A,G,C,T}weights = 1 \n”);

Aweight = Gweight = Cweight = Tweight = 1; */ 180

fprintf( fp out, "{ ");
while( *parsebuf != ’\0’ ) {

switch (*parsebuf){
case ’A’:

fprintf( fp out, "(%.10f)*1, ", Aweight);
break;

case ’G’:
fprintf( fp out, "(%.10f)*\\[ImaginaryI], ", Gweight);
break;

case ’C’: 190

fprintf( fp out, "(%.10f)*(-1)*\\[ImaginaryI], ", Cweight);
break;

case ’T’:
fprintf( fp out, "(%.10f)*(-1), ", Tweight);
break;

case ’0’:
fprintf( fp out, "0, ");
break;

}
parsebuf++; /* be sure to get first entry, increment after */ 200

j++;
}
DEBUGF("\n sanity check: padsize + AGCTcount = data_filesize = %lu \n"

"(*parsebuf != ’\\0’); parsebuf++; j++;) = %d \n", data filesize, j );
fprintf( fp out, "}");
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if( fflush( fp in ) | | fflush( fp out ) | | fflush(NULL))
printf("fflush() error \n");

printf("fp_out %d\n", fclose( fp out )); 210

printf("fp_in %d\n", fclose( fp in ));

stat( argv[2], &new statbuf );
out filesize = new statbuf.st size;
printf("DNA_query_file_math \t\"%s\" size = %8ld bytes \n", argv[2], out filesize );

/* delete final comma . . . */
execl("commakill.sh","./commakill.sh", argv[2], (char *)0);

free( parsebuf ); 220

return 0;
}

/*
* Return width of string s
*/

int
StringWidth(char *s) {

unsigned int w = 0; 230

while ((*s & 0xff) != ’\0’) {
/* w += font->widths[*s & 0xff]; */
w++;
s++;

}
return w;

}

char *progName( char *str ) 240

{
char *value;
if( ( value = strrchr( str, ’/’ ) ) != NULL )

return( value+1 );
else

return( str );
}

/*
* alloc : allocate memory 250

*/

char *alloc (register int bytes) {
register char *memory;
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/* auto char *malloc();*/
if ((memory = malloc( (unsigned) bytes )) == NULL){

fputs("malloc error \n", stderr);
exit(1);

}
return memory; 260

}

B.5 commakill.sh

#!/bin/sh

awk ’{gsub(", }", " }", $0); print > FILENAME}’ $1

B.6 DOIT.sh

#!/bin/sh

./cleanDNA.exe DNA.txt DNA−data.txt

./replaceplain.exe DNA−data.txt DNA−data−math.txt

./replacesize.exe DNA−query.txt DNA−query−math.txt DNA−data.txt

B.7 FFT.c

/* We aren’t allowed to publish the “Numerical Recipes in C” version
of the FFT. . . imagine seeing it in its full glory at your local
bookstore or library. */

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

/* Numerical Recipes fast Fourier transform. */
void four1(float data[ ], unsigned long nn, int isign); 10

float * lotsadata(void);

int my main (int argc, char **argv) {
unsigned int nsamp = 1E8;
static float * thedata;
thedata = (float*)malloc( 2 * nsamp * (size t) sizeof(float));
thedata = lotsadata();
four1(thedata−1, nsamp, 1);
return 0;

} 20
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B.8 nofasta.java

import java.io.*;

// Removes FASTA information from a database file
// Permits the encoding and correlation of an entire database file
// Accession numbers and names are removed, but may be (re)stored

// usage: java nofasta < est human > est human ohne gthan.txt

class nofasta {
10

public static void main (String argv[ ]) {

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
String buffer;

try {
nextline: while ( (buffer=in.readLine()) != null ) {

if ( buffer.charAt(0) == ’>’ ) {
System.err.println("we have evidence of a ’>’, Sir"); 20

continue nextline;
}
else{

out.write(buffer.concat("\n"));
}

}
out.flush();

}
catch (IOException ioe) {}

} 30

}

B.9 fftconvolve.c

/* Find jahan’s primers in the est human database file.

build: g++ fftconvolve.c fft.c -o fftconvolve -Wall -pedantic -lm

input: some “complex data[ ]”-formatted arrays in the source file

output: a file dump of double * corr
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*/
10

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "fft.h"

static const complex A = { 1.0, 0.0 };
static const complex C = { 0.0, −1.0 };
static const complex G = { 0.0, 1.0 }; 20

static const complex T = { −1.0, 0.0 };
static const complex N = { 0.0, 0.0 };

#define dsize 256

/*
* double * y is absolute value (modulus) of complex * x
*/

void abs complex(complex * x, double * y, int n){
int i; 30

/* modulus |x+iy|; */
for (i = 0; i< n; i++) {

y[i] = sqrt( pow(x[i].re,2) + pow(x[i].im,2) );
}

}

int main (){
int i,j,k; 40

FILE * fp;

double sqrtdsize = sqrt(dsize);

complex * datap;
complex * queryp;
double * corr; /* fed to abs complex */

complex data[ ] = {
C,A,C,C,C,C,C,G,G,A,T,G,A,G,C,A,T,T,A,G,T,C,T,A,C,C,T,G,C,T,A,A, 50

A,G,A,A,G,G,C,T,G,G,C,A,C,T,G,T,A,C,G,A,A,C,T,C,A,G,C,A,C,A,T,A,
T,G,C,A,G,C,C,C,A,A,T,T,G,T,T,T,T,T,G,G,C,G,T,C,T,G,C,C,T,T,G,A,
C,T,T,A,G,T,A,A,G,C,A,A,A,C,T,C,A,T,G,A,T,A,C,C,A,T,A,T,A,C,C,A,
G,C,T,T,C,C,A,T,C,A,G,T,T,A,C,G,A,T,C,T,T,G,C,T,G,A,C,G,A,C,T,T,
C,C,A,C,C,C,G,T,A,C,T,C,G,G,G,T,T,A,A,A,C,G,A,C,C,T,A,G,T,C,C,C,
C,G,G,T,C,A,G,A,C,A,T,C,G,A,C,T,G,T,T,C,A,G,C,A,T,C,T,C,G,T,A,C,
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A,A,T,T,T,A,C,A,T,G,C,C,T,G,G,A,A,C,G,G,G,A,T,A,G,C,A,C,A,C,C,T
};

complex query[ ] = { 60

A,G,A,A,G,G,C,T,G,G,C,A,C,T,G,T,A,C,G,A,N,N,N,N,N,N,N,N,N,N,N,N,
N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

};
70

datap = new complex signal(dsize);
queryp= new complex signal(dsize);
corr = new real signal(dsize);

for (i=0;i<dsize;i++){
datap[i] = data[i];
queryp[i] = query[i];

}

/* 80

convolve complex fourier(complex *x, complex *y, int n, int initial);

fft split(y, n);
mul dyadic complex(x, y, n);
ifft split(y ,n);

saves y (y := x cyclic y)
*/

fft split(queryp, dsize); 90

conjugate signal(queryp, dsize);
fft split(datap, dsize);
mul dyadic complex(datap, queryp, dsize);
ifft split(queryp, dsize);

abs complex(queryp, corr, dsize);

scale signal(sqrtdsize, corr, dsize);

100

fp=fopen("convolve.out","w");
fprintf(fp,"yo!\n");

for (i=0;i<dsize;i++){



86 APPENDIX B. IMPLEMENTATION OF ROUTINES

fprintf(fp,"%d\t%.20f\n",i,corr[i]);
}

return 0;
}
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