FFT analysis of DNA sequences

Harvey Lab Group Meeting March 1, 2004 Russell Hanson

Naïve string search: implementation

```
#undef strstr
/** find first occurrence of s2[] in s1[]
 \ast/char *(strstr) (const char *s1, const char *s2) {
   if (*s2 == '\\0')return ( (char *) s1 );
    for (; (s1 = strchr(s1, *s2)) := NULL; ++s1){
        const char *sc1, *sc2;
        for (sc1 = s1, sc2 = s2; ; )if (*+sc2 == '0')return ( (char *) s1 );
            else if (*++sc1 := sc2 )break;
    ł
    return (NULL);
\mathcal{F}
```
Alignments local and global

Definition 2.3.2. We define an alignment of two or more sequences intuitively. An *alignment* with *offset n* of a pair of alphabetic sequences S_1 and S_2 is a pairing of letters of the sequences in which the *i*-th letter of S_1 is paired with the $(i + n)$ -th of S_2 . For a particular alignment, a *match* occurs if and only if corresponding letters are identical.

Definition 2.3.3. The local alignment of two strings S_1 and S_2 , is given by substrings α and β of S_1 and S_2 , whose similarity, i.e. optimal global alignment value, is maximal for all pairs of substrings from S_1 and S_2 .

Definition 2.3.4. Local similarity is a measure of relatively conserved subsequences.

Definition 2.3.5. Global alignment determines the overall alignment of two sequences, and may contain large stretches of low similarity.

• Two steps: 1) Hash

2) Lookup table

 $_{2003.03.01}$ ever again). FFT sequence analysis 4 \bullet It encodes all the 8-mers as numbers, then it encodes the search string (i.e. chromosome sequence fragment), then it shifts the 8-mers along the search string, building a lookup table of 8-mers and their locations in the search string. For any subsequent search, therefore, you need only compare the hash values of the query string with the lookup table (avoiding working with the search string

Fourier transforms

The Fourier transform of a function $f(x)$ is the new function $F(x)$:

$$
F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(u)e^{ixu} du.
$$

The k-th element X_k of the transformed complex vector X_0, \ldots, X_{N-1} is:

$$
X_k = \sum_{j=0}^{N-1} x_j e^{-2\pi i j k/N}
$$

The inverse Fourier transform reverses the process; it maps N complex numbers (the X_i 's) into N complex numbers (the x_i 's), i.e. $X \mapsto x$:

$$
x_j = \frac{1}{N} \sum_{k=0}^{N-1} X_j e^{+2\pi i j k/N}.
$$
 (1.11)

Fourier transforms II

$$
X_k = x_j F_{jk}
$$

$$
F_{jk} = exp(-2\pi i/n)^{jk} = w_n^{jk}
$$

• This is a matrix vector multiplication, which takes $O(n)$ operations.

Convolution & correlation

The sequence vectors we convolve are

 d_i, \ldots, d_{N-1} $0 \leq i \leq N-1$ $data:$

query: ${}^{\omega}q_i, \ldots, q_{L-1}$ " $0 \leq i \leq L-1$

and the signal sequence c_n

signal:
$$
{}^{\omega}c_i, \ldots, c_{L+N-2} \qquad 0 \le i \le L+N-2.
$$

The convolution is given by

$$
c_n = \sum_{k=0}^{N-1} q_{n-k} d_k \qquad n = 0, \dots, L+N-2,
$$
 (1.14)

2003.03.01 FFT sequence analysis

Convolution & correlation II

The correlation is very closely related to convolution and is given by

$$
c_n = \sum_{k=0}^{N-1} q_{n+k} d_k \qquad n = 0, \dots, L+N-2,
$$
 (1.15)

where $q_{n+k} = 0$ if $n+k \geq L$. The correlation can be computed as a convolution simply by reading one of the two sequences backwards.

FFT Convolution equation

Take

$$
\alpha_j = \sum_{k=0}^{N-1} \beta_k e^{2\pi i j k/N},
$$

where β_k is the coefficient of the inverse Fourier transform. For the complete cycle modulo N, when $N = jk$, $j = N/k$ is a period. Then the correlation value is c_n for data and query vectors, D and Q respectively,

$$
c_n = \sum_{\mu} q_{\mu} d_{\mu+n}^* = \frac{1}{N^2} \sum_{\mu} \left(\sum_k Q_k e^{2\pi i k \mu/N} \right) \left(\sum_l D_l^* e^{-2\pi i l (\mu+n)/N} \right)
$$

=
$$
\frac{1}{N} \sum_{l \equiv (l \pmod{N})} Q_l D_l^* e^{-2\pi i l n/N}.
$$
 (1.16)

Convolution theorem

Theorem 3.1.4 (Convolution theorem). Let signals x, y have the same length D. Then the cyclic convolution of x, y satisfies

$$
x \times y = DFT^{-1}(DFT(x) * DFT(y)), \tag{3.9}
$$

or written in summation form

$$
(x \times y)_n = \frac{1}{D} \sum_{k=0}^{D-1} X_k Y_k g^{kn}.
$$

Base vector encodings

 $\alpha = a, c, t, a, t, g, a, t, t$ \mathbf{A} 100100100 010000000

 \mathcal{C} G 000001000 $\mathbf T$ 001010011

Figure 3.3: 4-Vector complex-plane base encoding

Figure 3.4: 2-Vector complex-plane base encoding

Figure 3.5: 1-Vector complex-plane base encoding

C Language implementation

convolve_complex_fourier(complex $*_x$, complex $*_y$, int n, int initial);

```
fft split(y, n);mul\_dyadic\_complex(x, y, n);if\text{f}t\_split(y \quad, n):
```

```
saves y(y) := x cyclic y)
*
```
 $\{ft_split(queryp, \, \text{disize})\}$ conjugate_signal(queryp, dsize); fft_split(datap, dsize); mul_dyadic_complex(datap, queryp, dsize); ifft_split(queryp, dsize);

```
abs_complex(queryp, corr, dsize);
```

```
scale_signal(sqrtdsize, corr, dsize);
```
2003.03.01 $fprint(fp, "M\dt, 20f\n', i, corr[i]);$

Results

Figure 1.4: *Homo sapiens* chromosome 1 and primer product correlation. The delta function at ~50,000 on the match position axis indicates a match of length equal to the convolution amplitude at base pair position 150,000 - 50,000 \approx 100,000. The database used was the *Homo sapiens genomic* contig sequences database which contains 1,395 sequences with 2,826,392,627 total letters. A sequence between primers including primers at both ends is called a "product." The primers were selected using http://www-genome.wi.mit.edu/cgibin/primer/primer3_www.cgi. A positive control was performed using BLASTN 13 2.2.4 [Aug-26-2002] at http://www.ncbi.nlm.nih.gov/blast/Blast.cgi.

PSSMs

Figure 3.1: Position-specific scoring matrices. The figure represents the gapless global alignment between string sequences $A = ATGCG$ and $B = TGTGA$. For a pairwise scoring, the old BLAST scoring method defaults to $+5$ for a match and -4 for a mismatch. Thus, the global alignment A and B shown has four matching letters and a score of $5+5-4+5=11$. The PSSM S represents the pairwise scoring when a sequence is aligned with B . S can also be aligned with sequence A and the result $5+5-4+5=11$ is necessarily the same as the pairwise score between A and B. An example of local alignment, as opposed to global alignment, generated by the same two sequences is: take subsequences GCG in A and GTG in B. Local alignments ignore any other relationships, like PSSM scores or other letters outside the subsequences. Gapped local alignment appears impossible with the FFT. See the MAFFT discussion in Section (2.2) for details on global alignment using FFT.

This figure was adapted from (Rajasekaran et al., 2002).

Shift-and algorithm

Figure 3.2: Shift-and match count algorithm. Shift-and is an easy way to find string similarity. Note for example that most processors have machine operations for "shift-right(accumulatorA,n)" and "bit-wise-AND(accumulatorA,operand)." The first step in shift-and-ing nucleotide sequences is performing a binary

encoding, for n.m-tuples α and β :

 $\alpha = \{age...t\} \longrightarrow 101100,$ $\beta = \{acc \dots g\} \longrightarrow 100100110.$

Breaking down each of the four component vectors, we get a total correlation value $V(\alpha, \beta, i)$ for offset *i*:

$$
V(\alpha, \beta, i) = V_a(\alpha, \beta, i) + V_c(\alpha, \beta, i) + V_g(\alpha, \beta, i) + V_t(\alpha, \beta, i).
$$
 (3.10)

MAFFT – Multi-Alignment FFT

FFT for global alignment

For reasons relating to "protein residue substitution frequencies," see (Grantham, 1974), Katoh et al. (2002) formulate the FFT correlation for an amino acid a in terms of (1) the volume value $v(a)$ and (2) the polarity value $p(a)$. As a result, the correlation of the volume component $c_v(k)$ is

$$
c_v(k) = \sum_{1 \le n \le N, 1 \le n+k \le M} \hat{v}_1(n)\hat{v}_2(n+k). \tag{2.1}
$$

And the correlation of the polarity component $c_p(k)$ is

$$
c_p(k) = \sum_{1 \le n \le N, 1 \le n+k \le M} \hat{p}_1(n)\hat{p}_2(n+k). \tag{2.2}
$$

These equations are functionally equivalent to Equation (1.15).

The correlation is very closely related to convolution and is given by

$$
c_n = \sum_{k=0}^{N-1} q_{n+k} d_k \qquad n = 0, \dots, L+N-2,
$$
 (1.15)

Group-group alignment

One can consider these two equations as special cases with one sequence in each group. So the extension from sequence-to-sequence to group-to-group alignment is done by replacing $\hat{v}_1(n)$ by $\hat{v}_{\text{ground}}(n)$. This is a linear combination of volume components belonging to group1. Thus Equations (2.1) and (2.2) now become:

$$
\hat{v}_{group1}(n) = \sum_{i \in group1} w_i \cdot \hat{v}_i(n) \tag{2.3}
$$

and

$$
\hat{p}_{group1}(n) = \sum_{i \in group1} w_i \cdot \hat{p}_i(n). \tag{2.4}
$$

 w_i is the weighting factor for sequence i calculated via the ClustalW method.